數(shù)學蘇教七年級下冊期末解答題壓軸重點初中試題(比較難)_第1頁
數(shù)學蘇教七年級下冊期末解答題壓軸重點初中試題(比較難)_第2頁
數(shù)學蘇教七年級下冊期末解答題壓軸重點初中試題(比較難)_第3頁
數(shù)學蘇教七年級下冊期末解答題壓軸重點初中試題(比較難)_第4頁
數(shù)學蘇教七年級下冊期末解答題壓軸重點初中試題(比較難)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學蘇教七年級下冊期末解答題壓軸重點初中試題(比較難)一、解答題1.如圖所示,已知射線.點E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.2.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)3.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說明理由;【問題遷移】如圖2,DF∥CE,點P在三角板AB邊上滑動,∠PCE=∠α,∠PDF=∠β.(1)當點P在E、F兩點之間運動時,如果α=30°,β=40°,則∠DPC=°.(2)如果點P在E、F兩點外側(cè)運動時(點P與點A、B、E、F四點不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說明理由.(圖1)(圖2)4.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準互余三角形”;(2)關(guān)于“準互余三角形”,有下列說法:①在中,若,,,則是“準互余三角形”;②若是“準互余三角形”,,,則;③“準互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準互余三角形”,請直接寫出的度數(shù).5.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內(nèi)一點,連接,,試探究與,,之間的關(guān)系.小明:可以用三角形內(nèi)角和定理去解決.小麗:用外角的相關(guān)結(jié)論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質(zhì))∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結(jié)果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關(guān)系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).6.已知,點、分別是、上的點,點在、之間,連接、.(1)如圖1,若,求的度數(shù).(2)在(1)的條件下,分別作和的平分線交于點,求的度數(shù).(3)如圖2,若點是下方一點,平分,平分,已知.則判斷以下兩個結(jié)論是否正確,并證明你認為正確的結(jié)論.①為定值;②為定值.7.(問題情境)蘇科版義務(wù)教育教科書數(shù)學七下第42頁有這樣的一個問題:(1)探究1:如圖1,在中,P是與的平分線和的交點,通過分析發(fā)現(xiàn),理由如下:∵和分別是和的角平分線,∴,.∴.又∵在中,,∴∴(2)探究2:如圖2中,H是外角與外角的平分線和的交點,若,則______.若,則與有怎樣的關(guān)系?請說明理由.(3)探究3:如圖3中,在中,P是與的平分線和的交點,過點P作,交于點D.外角的平分線與的延長線交于點E,則根據(jù)探究1的結(jié)論,下列角中與相等的角是______;A.B.C.(4)探究4:如圖4中,H是外角與外角的平分線和的交點,在探究3條件的基礎(chǔ)上,①試判斷與的位置關(guān)系,并說明理由;②在中,存在一個內(nèi)角等于的3倍,則的度數(shù)為______8.(1)證明:兩條平行線被第三條直線所截,一對同旁內(nèi)角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點O.求證:EO⊥FO.(3)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點O,∠P=102°,求∠O的度數(shù).9.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點,若,試探求與的數(shù)量關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,且的延長線與的延長線有交點,當點在線段的延長線上從左向右移動的過程中,直接寫出與所有可能的數(shù)量關(guān)系.10.已知:直線,點E,F(xiàn)分別在直線AB,CD上,點M為兩平行線內(nèi)部一點.(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為________;(直接寫出答案)(2)如圖2,∠MEB和∠MFD的角平分線交于點N,若∠EMF等于130°,求∠ENF的度數(shù);(3)如圖3,點G為直線CD上一點,延長GM交直線AB于點Q,點P為MG上一點,射線PF、EH相交于點H,滿足,,設(shè)∠EMF=α,求∠H的度數(shù)(用含α的代數(shù)式表示).【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.2.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點作平行線是解題的關(guān)鍵,準確識圖理清圖中各角度之間的關(guān)系也很重要.3.∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問題探究】解:∠DPC=α+β如圖,過P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β4.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準互余三角形”的定義逐個判斷即可;(3)根據(jù)“準互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準互余三角形”的定義逐個判斷即可;(3)根據(jù)“準互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準互余三角形”;(2)①∵,∴,∴是“準互余三角形”,故①正確;②∵,,∴,∴不是“準互余三角形”,故②錯誤;③設(shè)三角形的三個內(nèi)角分別為,且,∵三角形是“準互余三角形”,∴或,∴,∴,∴“準互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當2∠A+∠ABC=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當∠A+2∠APB=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當2∠APB+∠ABC=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當2∠A+∠APB=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時,是“準互余三角形”.【點睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進行求解.5.(1)三角形內(nèi)角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內(nèi)角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質(zhì)求解,就需要構(gòu)造外解析:(1)三角形內(nèi)角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內(nèi)角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質(zhì)求解,就需要構(gòu)造外角,因此延長交于,然后根據(jù)外角的性質(zhì)確定,,即可判斷與,,之間的關(guān)系;(3)①連接BC,然后根據(jù)(1)中結(jié)論,代入已知條件即可求解;②連接BC,然后根據(jù)(1)中結(jié)論,求得的和,進而得到的和,然后根據(jù)角平分線求得的和,進而求得,然后利用三角形內(nèi)角和定理,即可求解;③連接BC,首先求得,然后根據(jù)十等分線和三角形內(nèi)角和的性質(zhì)得到,然后得到的和,最后根據(jù)(1)中結(jié)論即可求解;④設(shè)與的交點為點,首先利用根據(jù)外角的性質(zhì)將用兩種形式表示出來,然后得到,然后根據(jù)角平分線的性質(zhì),移項整理即可判斷;⑤根據(jù)(1)問結(jié)論,得到的和,然后根據(jù)角平分線的性質(zhì)得到的和,然后利用三角形內(nèi)角和性質(zhì)即可求解.【詳解】(1)∵,(三角形內(nèi)角和180°)∴,(等式性質(zhì))∵,∴,∴.(等量代換)故答案為:三角形內(nèi)角和180°;等量代換.(2)如圖,延長交于,由三角形外角性質(zhì)可知,,,∴.(3)①如圖①所示,連接BC,,根據(jù)(1)中結(jié)論,得,∴,∴;②如圖②所示,連接BC,,根據(jù)(1)中結(jié)論,得,∴,∵與的角平分線交于點,∴,,∴,∵,,∴,∴,∵,∴;③如圖③所示,連接BC,,根據(jù)(1)中結(jié)論,得,∵,,∴,∵與的十等分線交于點,∴,,∴,∴,∵,∴,∴,∴,∴;④如圖④所示,設(shè)與的交點為點,∵平分,平分,∴,,∵,,∴,∴,∴,即;⑤∵,的角平分線交于點,∴,∴.【點睛】本題考查了三角形內(nèi)角和定量,外角的性質(zhì),以及輔助線的做法,重點是觀察題干中的解題思路,然后注意角平分線的性質(zhì),逐漸推到即可求解.6.(1)(2)(3)②是正確的,證明見解析【分析】(1)過點G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對應(yīng)的邊角解析:(1)(2)(3)②是正確的,證明見解析【分析】(1)過點G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對應(yīng)的邊角關(guān)系,進而∠MHN的具體值;(3)根據(jù)角平分線性質(zhì),設(shè),然后利用平行線的基本性質(zhì),分別推導出和的值即可判斷.【詳解】(1)如圖所示,過點作,∵,,∴,∴,,∴,∵,∴,∴.(2)如圖所示,過點作,過點作,∵,∴,∴,,∴,∵,∴,∵平分,平分,∴,,∴,∵,∴,,∴.(3)如圖所示,∵,∴,∵平分,∴,∴,∴,∵平分,∴,設(shè),則,∴,∴,,∴②中的值為定值.故②是正確的.【點睛】本題主要考查了平行線的性質(zhì),做題的關(guān)鍵是能夠找到輔助線,構(gòu)造輔助線.7.(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進行計算,即可得到的度數(shù)以及與的解析:(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進行計算,即可得到的度數(shù)以及與的關(guān)系;(3)由(1)中結(jié)論可得,再根據(jù)垂線的定義以及三角形外角性質(zhì),即可得出,進而得到;(4)①根據(jù),即可得到,再根據(jù)角平分線的定義,即可得到,依據(jù),即可判定;②由①可得,即可得出,再根據(jù)在中一個內(nèi)角等于的倍,分三種情況討論,即可得出的度數(shù).【詳解】解:(2)由(1)可得,,∵是外角與外角的平分線和的交點,是與的平分線和的交點,∴,同理可得,∴四邊形中,,故答案為:;若,則與關(guān)系為:.理由:由(1)可得,,∵是外角與外角的平分線和的交點,是與的平分線和的交點,∴,同理可得,∴四邊形中,.(3)由(1)可得,,∵,平分,∴,,∵是的外角,∴,∴,故答案為:;(4)①.理由:∵,∴,∵,分別平分,,∴,,∴,∴,∴;②由①可得,∴,∵平分,平分,∴,∴,分三種情況:①若,則,解得(不合題意),②若,則,∴,解得,∴,由(2)可得,,即,∴;③若,則,∴,解得,∴,由(2)可得,,即,∴;綜上所述,的度數(shù)為或.故答案為:或.【點睛】本題屬于三角形綜合題,主要考查的是角平分線的定義,三角形外角性質(zhì),三角形內(nèi)角和定理以及平行線的判定的綜合運用,熟記基本圖形中的結(jié)論,準確識圖并靈活運用基本結(jié)論是解題的關(guān)鍵.8.(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證明;(2)延長交于點,過點作交于點,結(jié)合(1)的方法即可證明;(3)延長、交于點,過點作交于點.結(jié)合(1)的方法可得,再根據(jù)角平分線定義即可求出結(jié)果.【詳解】(1)已知:如圖①,,直線分別交直線,于點,,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點作交直線于點.,,、分別平分、,.,,..;故答案為:直線分別交直線,于點,,、分別平分、,;(2)證明:如圖,延長交于點,過點作交于點,,,,.、分別平分、,,,,..;(3)解:如圖,延長、交于點,過點作交于點.,,,由(1)證法2可知,、分別平分、,.【點睛】本題考查了平行線的判定與性質(zhì),角平分線的定義,解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).9.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論