版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸必考知識點(diǎn)試題經(jīng)典套題解析一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請說明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說明理由2.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點(diǎn)D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點(diǎn)P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點(diǎn)P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).3.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對應(yīng)點(diǎn)分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請直接寫出旋轉(zhuǎn)的時(shí)間.4.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點(diǎn)落在內(nèi)的點(diǎn)處.(1)若,________.(2)如圖①,若各個(gè)角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點(diǎn)落在四邊形外部時(shí)(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關(guān)系?請說明.(3)應(yīng)用:如圖③:把一個(gè)三角形的三個(gè)角向內(nèi)折疊之后,且三個(gè)頂點(diǎn)不重合,那么圖中的和是________.5.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.6.閱讀材料:如圖1,點(diǎn)是直線上一點(diǎn),上方的四邊形中,,延長,,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.請按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長,交的平分線于點(diǎn)(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).7.如圖1,在△ABC中,∠B=90°,分別作其內(nèi)角∠ACB與外角∠DAC的平分線,且兩條角平分線所在的直線交于點(diǎn)E.(1)∠E=°;(2)分別作∠EAB與∠ECB的平分線,且兩條角平分線交于點(diǎn)F.①依題意在圖1中補(bǔ)全圖形;②求∠AFC的度數(shù);(3)在(2)的條件下,射線FM在∠AFC的內(nèi)部且∠AFM=∠AFC,設(shè)EC與AB的交點(diǎn)為H,射線HN在∠AHC的內(nèi)部且∠AHN=∠AHC,射線HN與FM交于點(diǎn)P,若∠FAH,∠FPH和∠FCH滿足的數(shù)量關(guān)系為∠FCH=m∠FAH+n∠FPH,請直接寫出m,n的值.8.已知,點(diǎn)、分別是、上的點(diǎn),點(diǎn)在、之間,連接、.(1)如圖1,若,求的度數(shù).(2)在(1)的條件下,分別作和的平分線交于點(diǎn),求的度數(shù).(3)如圖2,若點(diǎn)是下方一點(diǎn),平分,平分,已知.則判斷以下兩個(gè)結(jié)論是否正確,并證明你認(rèn)為正確的結(jié)論.①為定值;②為定值.9.如圖1,直線m與直線n相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B在直線n上運(yùn)動(dòng),AC、BC分別是∠BAO和∠ABO的角平分線.(1)若∠BAO=50o,∠ABO=40o,求∠ACB的度數(shù);(2)如圖2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其度數(shù)(用含α的代數(shù)式表示);(3)如圖3,若直線m與直線n相互垂直,延長AB至E,已知∠ABO、∠OBE的角平分線與∠BOQ的角平分線及延長線分別相交于D、F,在△BDF中,如果有一個(gè)角是另一個(gè)角的3倍,請直接寫出∠BAO的度數(shù).10.當(dāng)光線經(jīng)過鏡面反射時(shí),入射光線、反射光線與鏡面所夾的角對應(yīng)相等,例如:在圖①、圖②中,都有∠1=∠2,∠3=∠4.設(shè)鏡子AB與BC的夾角∠ABC=α.(1)如圖①,若入射光線EF與反射光線GH平行,則α=________°.(2)如圖②,若90°<α<180°,入射光線EF與反射光線GH的夾角∠FMH=β.探索α與β的數(shù)量關(guān)系,并說明理由.(3)如圖③,若α=120°,設(shè)鏡子CD與BC的夾角∠BCD=γ(90°<γ<180°),入射光線EF與鏡面AB的夾角∠1=m(0°<m<90°),已知入射光線EF從鏡面AB開始反射,經(jīng)過n(n為正整數(shù),且n≤3)次反射,當(dāng)?shù)趎次反射光線與入射光線EF平行時(shí),請直接寫出γ的度數(shù).(可用含有m的代數(shù)式表示)【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識;熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.2.(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點(diǎn)P在直線b的下方時(shí);②當(dāng)交點(diǎn)P在直線a,b之間時(shí);③當(dāng)交點(diǎn)P在直線a的上方時(shí);分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點(diǎn)P在直線a,b之間時(shí);②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí);【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=∠1﹣50°=20°;②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|;【點(diǎn)睛】考查知識點(diǎn):平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動(dòng)點(diǎn)P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運(yùn)用是解題的突破口.3.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.4.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個(gè)平角∠AEB和∠ADC得:∠1+∠2等于360°與四個(gè)折疊角的差,化簡得結(jié)果;②利用兩次外角定理得出結(jié)論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內(nèi)角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內(nèi)角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個(gè)外角∴.∵是的一個(gè)外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點(diǎn)睛】題主要考查了折疊變換、三角形、四邊形內(nèi)角和定理.注意折疊前后圖形全等;三角形內(nèi)角和為180°;四邊形內(nèi)角和等于360度.5.(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.6.閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點(diǎn)作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點(diǎn)作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過H點(diǎn)作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點(diǎn)評】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.7.(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,根據(jù)已知可推導(dǎo)得出x﹣y=45,再解析:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根據(jù)角平分線的定義可得∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,根據(jù)已知可推導(dǎo)得出x﹣y=45,再根據(jù)三角形外角的性質(zhì)即可求得答案;(2)①根據(jù)角平分線的尺規(guī)作圖的方法作出圖形即可;②如圖2,由CF平分∠ECB可得∠ECF=y,再根據(jù)∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推導(dǎo)得出45°+=∠F+y,由此即可求得答案;(3)如圖3,設(shè)∠FAH=α,根據(jù)AF平分∠EAB可得∠FAH=∠EAF=α,根據(jù)已知可推導(dǎo)得出∠FCH=α﹣22.5①,α+22.5=30+∠FCH+∠FPH②,由此可得∠FPH=,再根據(jù)∠FCH=m∠FAH+n∠FPH,即可求得答案.【詳解】(1)如圖1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,設(shè)∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案為45;(2)①如圖2所示,②如圖2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如圖3,設(shè)∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、基本作圖——角平分線等,熟練掌握三角形內(nèi)角和定理以及三角形外角的性質(zhì)、結(jié)合圖形進(jìn)行求解是關(guān)鍵.8.(1)(2)(3)②是正確的,證明見解析【分析】(1)過點(diǎn)G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對應(yīng)的邊角解析:(1)(2)(3)②是正確的,證明見解析【分析】(1)過點(diǎn)G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對應(yīng)的邊角關(guān)系,進(jìn)而∠MHN的具體值;(3)根據(jù)角平分線性質(zhì),設(shè),然后利用平行線的基本性質(zhì),分別推導(dǎo)出和的值即可判斷.【詳解】(1)如圖所示,過點(diǎn)作,∵,,∴,∴,,∴,∵,∴,∴.(2)如圖所示,過點(diǎn)作,過點(diǎn)作,∵,∴,∴,,∴,∵,∴,∵平分,平分,∴,,∴,∵,∴,,∴.(3)如圖所示,∵,∴,∵平分,∴,∴,∴,∵平分,∴,設(shè),則,∴,∴,,∴②中的值為定值.故②是正確的.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),做題的關(guān)鍵是能夠找到輔助線,構(gòu)造輔助線.9.(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+解析:(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通過加減消元求出α與∠D的等量關(guān)系.(3)先通過角平分線的性質(zhì)求出∠FBD為90°,再分類討論有一個(gè)角是另一個(gè)角的3倍的情況求解.【詳解】解:(1)、分別是和的角平分線,,,.(2)的大小不發(fā)生變化,理由如下:如圖,平分,平分,平分,,,,是的外角,,即①,是的外角,,即②,由①②得,解得.(3)如圖,平分,平分,平分,,,,,是的外角,,.①當(dāng)時(shí),,,,.②當(dāng)時(shí),,.,不符合題意.③當(dāng)時(shí),,解得,,.④當(dāng)時(shí),,,解得,,,不符合題意.綜上所述,或.【點(diǎn)睛】本題考查三角形的內(nèi)角和定理與外角定理以及角平分線的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和與外角定理,通過分類討論求解.10.(1)90°;(2)β=2α-180°,理由見解析;(3)90°+m或150°【分析】(1)根據(jù)EF∥GH,得到∠FEG+∠EGH=180°,再根據(jù)∠1+∠2+∠FEG=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年阿片類中毒解毒藥項(xiàng)目建議書
- 2025年多導(dǎo)生理記錄儀(8導(dǎo)以上)項(xiàng)目發(fā)展計(jì)劃
- 遼寧省2025秋九年級英語全冊Unit10You'resupposedtoshakehands課時(shí)3SectionA(GrammarFocus-4c)課件新版人教新目標(biāo)版
- 2025年透皮吸收材料合作協(xié)議書
- 2025年速釋制劑材料項(xiàng)目發(fā)展計(jì)劃
- 2025年軟泡聚醚項(xiàng)目建議書
- 老年常見疾病的護(hù)理與預(yù)防
- 如何塑造白嫩肌膚
- 先心病患兒常見癥狀護(hù)理
- 機(jī)器人基礎(chǔ)與實(shí)踐 課件 第7、8章 機(jī)器人環(huán)境識別理論與實(shí)踐、機(jī)器人定位及地圖構(gòu)建理論與實(shí)踐
- 2026成方金融信息技術(shù)服務(wù)有限公司校園招聘5人考試題庫附答案
- 車輛租賃服務(wù)協(xié)議書
- 2025安徽安慶市公安機(jī)關(guān)招聘警務(wù)輔助人員418人備考筆試題庫及答案解析
- 2025廣東廣州市黃埔區(qū)招聘社區(qū)專職工作人員50人(第二次)參考筆試題庫及答案解析
- 2024年廣州市南沙區(qū)南沙街道社區(qū)專職招聘考試真題
- 2026年牡丹江大學(xué)單招職業(yè)技能考試題庫新版
- 江西省三新協(xié)同體2025-2026年高一上12月歷史試卷(含答案)
- 2026年大慶醫(yī)學(xué)高等??茖W(xué)校單招職業(yè)適應(yīng)性測試題庫及答案詳解1套
- (2026年)老年癡呆認(rèn)知癥患者的照護(hù)課件
- 2025年中職電梯安全管理(電梯安全規(guī)范)試題及答案
- 武理工船舶輔機(jī)課件03離心泵
評論
0/150
提交評論