版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
電磁場與電磁波Electromagnetic
Fieldsand
WavesChapter1Vectoranalysis1.1Vectorfundamentals1-1Scalarsandvectors標(biāo)量和矢量Magnitudeofvectors:Unitvectors(單位矢量):Scalars(標(biāo)量):Aquantityhasonlymagnitude.Algebraicdescriptionofvectors:Vectors(矢量):
Aquantityhasbothmagnitudeanddirection.
Itisusuallyrepresentedbyboldlettersorarrows.Geometricdescriptionofvectors:Avectorisgeometricallydescribedbyasegmentofadirectedstraight-line.GeometricdescriptionofvectorsConstantvectors(常矢量):Themagnitudeandthedirectionofavectorisconstant.
Vectorsaredescriptedbycoordinatecomponents(坐標(biāo)分量)zxy(1)VectorialadditionandsubtractionTheadditionandsubtractionoftwovectorsfollowtheparallelogramruleingeometrically,asshowninthefigure.Theadditionandsubtractionofoperationobeytheassociativeandcommutativelaws:1-2Vectoralgebraicoperation(矢量的代數(shù)運(yùn)算)矢量的加法矢量的減法TheadditionandsubtractionoftwovectorsinRectangularCoordinateSystem:Associativelaw結(jié)合律Commutativelaw交換律(2)Avectorismultipliedbyascalar(3)Dotproduct(點(diǎn)積)——DotproductofvectorsobeyCommutativelawq矢量與的夾角(4)Crossproduct(叉積)qsinABq矢量與的叉積TheycanbedescribedinRectangularCoordinateSystem:Determinant(行列式)form
:If,thenIf,then(5)Mixedoperationofvectors(混合運(yùn)算)——
Distributivelaw(分配律)——
Distributivelaw(分配律)——
Scalartripleproduct(標(biāo)量三重積)——
Vectortripleproduct(矢量三重積)1.2Scalarfields1.2.1DirectionalderivativeofascalarfieldThedirectionalderivativeofascalarfieldatapointrepresentstherateofchangeofascalarfieldinadirectionfromthepoint1.2ScalarfieldsThedirectionalderivativeofascalarfieldinthedirectionofapointisdefinedasInrectangularcoordinates:Thedirectioncosineofvectoris
,thenVector
Giscomposoedofthreecoordinatecomponents1.2.2Gradientofascalarfieldtheunitvectorofvectorlisthedirectionalderivativeofscalarfunction
alongthedirectionofvectorl
is1.2ScalarfieldsThevectoriscalledthegradientofthescalarfield
,denotedby1.2.2Gradientofascalarfield1.2ScalarfieldsInrectangularcoordinatesystem,theHamiltonianoperatorisdenotedbyThegradientexpressionofthescalarfunction
isWhere1.2ScalarfieldsIncylindricalcoordinatesystemAnimportantpropertyofgradientsisthatthecurlofgradientsisequaltozeroInsphericalcoordinatesystem1.2ScalarfieldsThegradientofascalarfieldisavectorwithafunctionofspacecoordinates.Themagnitudeofthegradientisthemaximumrateofchangeofthescalarfunction,whichisthemaximumdirectionalderivativevalueatthepointThedirectionofthegradientisthedirectionofthemaximumdirectionalderivativeofthepoint,perpendiculartotheisosurface,andpointingtothedirectionoftheincreasingfunctionvalue.thegradientofscalarfieldhasthefollowingthreecharacteristics:1.2Scalarfields
Solution:Accordingtothedefinitionofgradient,thegradientofthescalarfunctioncanbewrittenas
Example1-1givenascalarfunction
,findthegradientatpoint
.
itsmodulusis
Therefore,thegradientatpoint
thatis,themaximumdirectionalderivativeatpointis1.2ScalarfieldsExampleGiveaspatialscalarfield
(x,y,z)=x2+y2-z:(1)Findthegradientofthescalarfield
atthepointP(1,1,1),andfindtheunitvectorthatcanexpressthedirectionofthegradient;(2)Findthedirectionalderivativeof
alongthedirectionofunitvectorel=
excos60
+eycos45
+ezcos60
,andcomparethedirectionalderivativeatpointP(1,1,1)withthegradientofthispoint.Solution:
(1)Usinggradientformula,thegradientatpointPisUnitvectorcanbeexpressedas
(2)Usingtherelationshipbetweenthedirectionalderivativeandgradient,thedirectionalderivativealongthedirectionof
el
canbeobtainedasThevalueofthedirectionalderivativeatpointPcanbeobtainedasThegradientvalueatthepointPcanbeobtainedas
Apparently,
thegradientdescribesthemaximumrateofchangeofatpointP.Thatisthemaximumdirectionalderivative.Sotheformulaisforeveradmitted.1.3VectorFields1.Fluxofavectorfields
Thesurfaceintegralofvector
A
alongadirectedsurface
Siscalledthefluxofthevector
Athroughthedirectedsurface
S,expressedintermsofIfSisaclosedsurface,wegetThedirectedplaneelement——Thedirectedplaneelement——Theunitvectorinthedirectionofthepositivenormalofthedirectedplaneelement1.3.1FluxanddivergenceofvectorfieldThereisapositivesourceintheclosedsurfaceThereisanegativesourceintheclosedsurfaceTheclosedsurfaceisconsideredpassiveThreepossibleoutcomesoffluxofavectorfieldthroughaclosedsurface
Fromamacroscopicperspective,thefluxofaclosedsurfaceestablishestherelationshipbetweenthefluxofavectorfieldthroughtheclosedsurfaceandthesourcewithinthesurfacethatgeneratesthevectorfield.Thephysicalsignificanceofflux:1.3.1Fluxanddivergenceofvectorfield2.Divergenceofvectorfield
Inordertoshowthedistributionoffluxsourcesatanypointinthefield,theconceptoffluxdensity(divergence)isintroduced.
IftheclosedsurfaceS
contractsinfinitelytoapoint,thenthelimitoftheratioofthefluxofvectorA
throughtheclosedsurfaceStothevolumeenclosedbytheclosedsurfaceiscalledthedivergenceofthevectorfieldAatthatpoint,
Inrectangularcoordinatesystem,1.3.1FluxanddivergenceofvectorfieldThedivergenceofvectorfieldAcanbeexpressedasthescalarproductofHamiltonianoperatorandvector
A
Inrectangularcoordinatesystem,thedivergenceofvectorfieldAcanbeexpressedas1.3.1Fluxanddivergenceofvectorfield2.DivergenceofvectorfieldIncylindricalcoordinatesystemInsphericalcoordinatesystemInrectangularcoordinatesystemThedivergenceexpressionofvectorfield
A:1.3.1FluxanddivergenceofvectorfieldThethreecharacteristicsofvectorfielddivergenceareasfollows:Thedivergenceofvectorisascalarandafunctionofspatialcoordinates.Divergencerepresentstheintensityofthefluxsourceofavectorfieldfluxsourceofthevectorfieldwherethedivergenceisnotzero,whichisthebeginningorendofthevectorline.Inapassiveregion,thedivergenceofeachpointiszero.Ifthedivergenceofapointinthefieldisgreaterthanzero,thereisapositivesource.Ifthedivergenceislessthanzero,thereisanegativesourceatthispoint.Ifthedivergenceiszero,thepointispassive.1.3.1Fluxanddivergenceofvectorfield2.Divergenceofvectorfield3.Thedivergence
theorem體積的剖分VS1S2en2en1S
Thedivergencetheoremstatesthatthevolumeintegralofthedivergenceofavectorfieldisequaltothesurfaceintegralofthevectorfieldoveraclosedsurfaceenclosingthevolume.1.3.1Fluxanddivergenceofvectorfield
Thedivergencetheoremhastwoapplications:Intheviewofmathematical,thedivergencetheoremcanrealizetheconversionbetweentheclosedsurfaceintegralofvectorfunctionandthevolumeintegralofscalarfunction.Intheviewoffieldvector,thedivergencetheoremestablishestherelationshipbetweenthefieldinaregionVandthefieldsurroundingtheboundarysurfaceofthatregion.1.3.1Fluxanddivergenceofvectorfield3.Thedivergence
theoremThedivergenceofgradientofthescalarfunction
SecondorderdifferentialoperatorcalledLaplaceoperator
iscalledtheLaplaceoperator,anditsexpressioninrectangularcoordinatesystemis1.3.1FluxanddivergenceofvectorfieldInrectangularcoordinatesystemIncylindricalcoordinatesystemInsphericalcoordinates
system1.3.1FluxanddivergenceofvectorfieldThecirculationcandescribethevortexcharacteristicsofthevectorfieldandthevalueofthecirculationisproportionaltothevalueofthenetvortexsourcesurroundedby
l.1.ThecirculationofvectorfieldsThelineintegralofvectorfield
Aalongthedirectedclosedcurve
liscalledthecirculationofvectorfield
Aalongthecurve,1.3.2ThecirculationandcurlofvectorfieldsThecirculateddensitiesofvector
maybedifferentwithrespecttodirection.Thecirculationcanrepresentthesourceintensitywithvortexcharacteristics.Inordertoreflectthedistributionofvortexsourcesateachpointinthefield,thecirculationdensityisintroduced.2.Thecurlofvectorfield(1)Circulationintensity1.3.2ThecirculationandcurlofvectorfieldsThecurlofavectorfieldrepresentsthemaximumcirculationwithaunitareaofthevector.Characteristic:(2)CurlThecurlofvector
A
hasexpressedasthecrossproductoftheHamiltonoperator▽
andvector
A1.3.2ThecirculationandcurlofvectorfieldsFourcharacteristicsofthecurlofavectorfields:Thecurlofavectorfieldisavectorwithspacecoordinates.Thecurlvalueisthemaximumcirculationdensityatthespecificpoint.Thecurldirectionisthedirectionofthemaximumcirculationdensityatthespecificpoint.Thecirculationdensityofthecurlfieldisnotazeroandnonrotationalfield.Ontheotherhand,thecirculationdensityofthecurlfielddefinedasarotationalfieldanditsdensityiszeroeverywhere.(2)Curl1.3.2Thecirculationandcurlofvectorfields
Rectangularcoordinatesystem
CylindricalcoordinatesystemSphericalcoordinatesystem1.3.2Thecirculationandcurlofvectorfields3.Curltheorem
Thecurltheoremstatesthatthesurfaceintegralofthecurlofavectorfieldisequaltothelineintegralofthevectorfieldoveraclosedpathdefiningthearea.曲面的剖分Oppositedirectionsandequalmagnitudesresultincancellation
Thecurltheoremisanimportanttheoreminvectoranalysisandusedtoelectromagneticfieldtheory.1.3.2ThecirculationandcurlofvectorfieldsThecurltheoremhastwoapplications:
(1)Intheviewofthemathematical,thecurltheoremcanrealizetheconversionbetweenthesurfaceintegralofvectorfunctionandthelooprouteintegralofvectorfunction.
(2)Intheviewofthefield,thecurltheoremestablishestherelationshipbetweenthefieldinthesurfaceandthefieldontheboundarythatdefinestheregion.1.3.2Thecirculationandcurlofvectorfields3.Curltheorem4、散度和旋度的區(qū)別
1.3.2ThecirculationandcurlofvectorfieldsSolution:
GivenExample1-2
Findthedivergenceandcurlofthepositionvector
atanypoint(x,y,z)inspace.ThenSolution:
Example1-3
givenavector,trytosolve1.4Green’sTheorem&Helmholtz’sTheorem1.4.1Green’sTheorem1.LaplaceOperationConcept:——LaplaceoperatorRectangularcoordinatesystemCalculationformula:CylindricalcoordinatesystemSphericalcoordinatesystem
VectorLaplacianoperationConcept:namelyNote:Fornon-perpendicularcomponentsRectangularcoordinatesystem:Suchas:1.4.1Green’sTheorem2.Green’sTheorem
Lettwoscalarfields
and
becontinuousandsecondpartialderivativestotheregionVBasedontherelationshipbetweendirectionalderivativeandgradient,theaboveformulacanalsobewrittenasSV
,
1.4.1Green’sTheoremBasedontheaboveformulas,thefollowingtwoformulascanalsobeobtained:1.4.1Green’sTheoremTheabovetwoequationsarecalledtheGreen'ssecondtheorem.TheabovetwoequationsarecalledtheGreen'sfirsttheorem.SinceGreen'stheoremshowstherelationbetweenthefieldinregionandthefieldontheboundary,wecanuseGreen’stheoremtosolvetheproblemsbetweentheregionalfieldandtheboundaryfield.
Inaddition,Green'stheoremstatestherelationthattwofieldsshouldsatisfy.
Therefore,Green'stheoremiswidelyusedinvectoranalysisandelectromagneticfieldtheory.1.4.1Green’sTheorem
Ifthevectorfieldissingle-valuedeverywhereininfinitespace,anditsderivativeiscontinuousandbounded,andthesourcedistributionisinafiniteregion,thenwhenthedivergenceandcurlofthevectorfieldaregiven,thevectorfieldcanbeexpressedasWhere:
Helmholtz'stheoremstatesthatavectorfieldcanbedeterminedbyitsdivergenceandcurl
inanunboundedspatialregion.1.4.2Helmholtz’sTheoremaboundedregion
Inaboundedregion,thevectorfieldisnotonlyrelatedtothedivergenceandcurlwithintheregion,butalsotothetangentialandnormalcomponentsofthevectorfieldontheregion'sboundary.1.4.2Helmholtz’sTheorem1.Thedivergenceequationandcurlequationconstitutethedifferentialformsofthebasicequationsofavectorfield.Helmholtz'stheoremsummarizesthefundamentalpropertiesofvectorfields,anditssignificanceisextremelyimportant.2.Thefluxalongaclosedsurfaceandthecirculationalongaclosedpathconstitutetheintegralformsofthefundamentalequationsofavectorfield.1.4.2Helmholtz’sTheoremChapterSummaryKeypoints:Threecoordinatesystems,Threedegrees,ThreetheoremsGradient:Itindicatesthedirectionofthemaximumrateofchangeatapointinascalarfield,determinedbythepartialderivativesofthescalarfieldwithrespecttoeachcoordinate.ChapterSummaryDivergence:Itrepresentsthefluxdensityatapointinavectorfield,whichdependsonthepartialderivativesofthefieldcomponentswithrespecttotheirrespectivecoordinates,determinedbytherateofchangeofthefieldcomponentsintheirrespectivedirections.ChapterSummaryCurl:Itrepresentsthemaximumcirculationsurfacedensityatapointinthefield,whichdependsonthedifferentialofeachcoordinatecomponentofthevectorfieldwithrespecttothecoordinateintheperpendiculardirection.Itisdeterminedbytherateofchangeofeachfieldcomponentinthedirectionorthogonaltoit.Divergencetheorem:Itestablishestheconnectionbetweenthesurfaceintegralofaclosedsurfaceandthevolumeintegralofspace.Curltheorem:Itestablishestheconnectionbetweentheclosedcurveintegralandthesurfaceintegralenclosedbyit.Helmholtz’stheorem:Itpointsouttwodirectionsforstudyingspatialvectorfields.ChapterSummary電磁場與電磁波Electromagnetic
Fieldsand
WavesChapter2ElectrostaticFields2.1ElectrostaticFieldsinvacuum2.1.1ElectricFieldIntensity(2)Coulomb'slaw(1)Whatiselectrostaticfield?(3)Twotypesof"points"inthefield(4)Theelectricfieldintensitygeneratedbyapointcharge(5)Theelectricfieldintensitywhichisgeneratedbyadistributedcharge2.1.1ElectricFieldIntensity(1)Whatiselectrostaticfield?
Thechargesurroundsaspecialformofmattercalledanelectricfield.
Theelectricfieldactsasamechanicalforceonthechargeinit.①Theelectricfieldcausedbyachargeatrestwithrespecttotheobserverandwhosechargedoesnotchangewithtimeiselectrostaticfield.②Thebasicfieldquantityofelectrostaticfieldiselectricfieldintensity
.electrostaticfield:Theelectricfieldgeneratedbyastationarycharge.Importantcharacteristic:Theelectricfieldexertsaforceonchargeslocatedwithinit.2.1.1ElectricFieldIntensity
Forcebetweentwo-pointchargesq1andq2inaninfinitevacuum:(2)Coulomb’sLawThedielectricconstantofvacuum2.1.1ElectricFieldIntensityElectricfieldforceobeysthesuperpositiontheoremqq1q2q3q4q5q6q72.1.1ElectricFieldIntensity(3)twotypesof"points":fieldpointandsourcepointThesourcepoint:thelocationofthefieldsource(suchaspointcharge)orThefieldpoint:wherethefieldquantityneedstobedeterminedorThedistancevectorfromthesourcetothefieldpoint:Iftherearemultiplesourcepoints,thedistancevectorfromtheoriginofcoordinatestothesourcepointisTheunitvectorisHasnpointcharges
respectivelylocatedinTheforceactonpointcharge
locatedin(4)ElectricFieldIntensityofapointchargeandasystemofpointchargesWhatifthechargeiscontinuouslydistributed?TheelectricfieldintensityofthepointchargeElectricFieldIntensity——Testcharge
2.1.1ElectricFieldIntensity(5)
ElectricFieldIntensityofdistributedchargeThevolumechargedensity:Thesurfacechargedensity:Thelinechargedensity:Theelementcharge
:2.1.1ElectricFieldIntensityWecandivideanydistributedchargeintomanyelementcharges,andtreateachelementchargeasapointcharge.Inaninfinitevacuum,accordingtothecalculationformulaoffieldintensitygeneratedbypointcharge,theelementfieldintensityatthefieldpoint(r)generatedbytheelementcharge
dq
at(r’)isByapplyingthesuperpositionprinciple,thefieldintensityatthefieldpoint(r)canbeobtainedbyintegratingallthefieldsourcecharges(5)
ElectricFieldIntensityofdistributedchargeElectricfieldgeneratedbychargesinasmallvolumeelementSurfacedistributedchargeLine-distributedchargeElectricfieldintensitygeneratedbyuniformlyvolume-distributedcharge(5)
ElectricFieldIntensityofdistributedchargeElectricfieldintensityofseveraltypicalchargedistributions(infinitelength)(finitelength)均勻帶電直線段均勻帶電圓環(huán)auniformlychargedstraightlinesegment:theaxisofauniformlychargedcircularring:Example:Findtheelectricfieldcausedbyaninfinitelylonglinechargeuniformlydistributedwithlinedensity
invacuum,asshowninthefigure.Whenthedisplacementofq0isdl,theworkdonebytheelectricfieldforceis
ThevoltagefromPtoQis1.Definitionofvoltage2.1.2ElectricPotentialIfq0ismovedfrompointPtopointQ,thetotalworkdonebytheelectricfieldforceisThevoltagebetweentwopointsisequaltotheworkdonebytheelectricfieldforcewhenaunitpositivechargeismovedbetweentwopoints.Thevoltagebetweenanytwopointsinanelectrostaticfieldisequaltothelineintegraloftheelectricfieldintensity.Ifthechargemoves
alonganyclosedpath
intheelectrostaticfield,theworkdonebytheelectricfieldforceisequaltozero.2.Theelectrostaticfieldisaconservationfield2.1.2ElectricPotentialThelooprouteintegraloftheelectricfieldintensityvector
ETheelectrostaticfieldisaconservativefield.3.Definitionandcalculationofpotential2.1.2ElectricPotentialThepotentialofapointinanelectricfieldisdefinedastheworkdonebytheforceoftheelectricfieldtomoveaunitpositivechargefromthatpointtoapointofzeropotential(thereferencepoint).IfpointQistakenasthepotentialreferencepointThepotentialatthereferencepointisobviouslyzero.Thepotentialofapointatinfinityisusuallychosentobezero2.1.2ElectricPotential
ThepotentialofapointchargeqattheoriginofthecoordinatesinavacuumatadistancerIfthefieldsourcehasnpointcharges,thepotentialatthefieldpoint(r)canbeobtainedbyapplyingthesuperpositionprincipleWherethefieldsourcecontainsvariousdistributedcharges3.Definitionandcalculationofpotential2.1.3TherelationshipbetweenelectricfieldintensityandpotentialThecurlofthegradientofanyscalarisequaltozero1.FromEto2.FromtoEBecauseof
,applythecurltheoremtheelectrostaticfieldisanon-rotationalfieldTheelectricfieldintensityisequaltothenegativegradientofpotentialSolution:Example2-2Figureshowsthelinechargeofacircularringwithradiusa(linechargedensity
)onthexOyplaneinvacuum.TrytodeterminethepotentialandelectricfieldintensityatpointPontheaxiszawayfromthecenterofthecircle.Accordingtotheanalysis,thefieldintensityhasonlyzcomponentExample2-3Figureshowsauniformlychargeddiskwithradiusaandsurfacechargedensity
.Findtheelectricfieldintensityontheaxisofthedisk.ThepotentialgeneratedbythechargeontheentirediskatpointPisSolution:Takearingwithradiusrandwidthdr
onthedisk,andthepotentialgeneratedbytheelementcharge
ontheringatpointPontheaxisisTheobtainableelectricfieldintensityisApplythegradientexpressionincylindricalcoordinatesystemIftheradiusofthedisctendstoinfinityExample
Findthepotentialofauniformlychargedwirewithalengthof2Landachargedensityof
.xyzL-L
Solution:Usingcylindricalcoordinates,letthelinechargecoincidewiththez-axis,withthemidpointlocatedatthecoordinateorigin.Duetoaxialsymmetry,theelectricpotentialisindependentofz.When
Theaboveexpressionbecomesinfinitebecausethechargeisnotdistributedwithinafinitearea,andthepotentialreferencepointischosenataninfinitelydistantpoint.Anarbitraryconstantcanbeaddedtotheaboveformula,resultinginSelectingthepointwhereρ=aasthepotentialreferencepoint,wehave①
Electricfieldline(Eline)E
lineisacurveonwhichthedirectionofthetangentlineateachpointisthesameasthedirectionofthefieldintensityatthatpoint.IfdlrepresentstheelementsegmentonE
line,theE=kdl,namelyEx=kdx,Ey=kdy,
Ez=kdz,
andthedifferentialequationoflineinrectangularcoordinatesystemis:2.1.4Thedistributionpatternofthefield②EquipotentialsurfaceandequipotentiallineTheequationoftheequipotentialsurfaceisthefollowingTheequipotentialsurfaceandthefieldlineareperpendiculareverywhere.Thedensertheequipotentialdistribution,thegreaterthefieldintensity.等位線的切線等位線PαEP‘dlExample2-4DeterminetheequationofElineinpointchargefield.zxyP(x,y,z)orqSolution:Supposepointchargeislocatedattheoriginofcoordinates,thenFromdifferentialequation
get2.2ElectrostaticFieldsindielectrics2.2.1Polarizationofdielectrics
Theresponseofamediumtoanelectromagneticfieldcanbedividedintothreecases:
polarization,magnetization,andconduction.
Theparametersthatdescribetheelectromagneticpropertiesofamediumare:
dielectricconstant,magneticpermeability,andconductivity.1.Propertiesofconductorsinelectrostaticequilibrium(1)Thefieldintensityintheconductorshouldbezero;(2)Conductorsareequipotential,andthepotentialsateachpointareequal;(3)Thedirectionofthefieldintensityatanypointontheconductorsurfacemustbeperpendiculartotheconductorsurface;(4)Iftheconductorischarged,thechargecanonlybedistributedonthesurface.2.2.1Polarizationofdielectrics2.dielectricsTheparticlesinsideadielectriccanmoveslightlyundertheactionofanexternalelectricfield,butcannotleavetherangeofmolecules.Thechargecarriedbytheparticlesinsidethedielectriciscalledboundcharge.Anidealmedium,alsocalledaninsulator,isamediumwithzeroelectricalconductivity.
2.2.1Polarizationofdielectrics2.dielectricsThedielectriclosesitsdielectricpropertyandbecomesaconductorundertheactionofastrongenoughelectricfield,whichiscalleddielectricbreakdown.Thecorrespondingvoltageiscalledbreakdownvoltage,andthefieldintensityatthetimeofbreakdowniscalledbreakdownfieldintensity.2.2.1Polarizationofdielectrics3.ElectricdipoleElectricdipolereferstotwoelectricchargeswithoppositesignsandequalvaluesthatareveryclosetoeachother.Electricdipolemoment:Thedirectionofpisfromthenegativechargetothepositivecharge.Anelectricdipolecausesanelectricfieldaroundit,anditisalsosubjecttoaforceinanexternalelectricfield.2.2.1Polarizationofdielectrics4.PolarizationofdielectricUndertheactionofanappliedelectricfield,theboundchargeinthemediumshifts.Thephenomenoniscalledpolarization.Insidethepolarizedmediumappearanumberofelectricdipolesarrangedinroughlythesamedirection,theseelectricdipoleswillproduceanelectricfield.2.2.1Polarizationofdielectrics1)Undertheinfluenceofanexternalelectricfield,adielectricmaterialwillundergopolarization.2)Thedegreeofpolarizationisdeterminedbythemagnitudeoftheelectricdipolemomentwithinthemedium.4.PolarizationofdielectricTheelectricfieldinapolarizedmediumisthecompositeoftheexternallyappliedelectricfieldandtheelectricfieldoftheelectricdipole.2.2.1PolarizationofdielectricsUniformmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofspatialcoordinates.Isotropicmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofthedirectionoftheelectricfieldquantity,otherwiseitisanisotropicmedium,suchasdiode.Linearmedium:theparametersofthemediumdonotchangewiththechangeoftheelectricfieldquantity.4.PolarizationofdielectricCommontermsformediaareasfollows.2.2.1Polarizationofdielectrics5.PolarizationintensityDefinition:thevectorsumoftheelectricdipolemomentintheunitvolumeafterpolarization
Theexperimentalresultsshowthatthepolarizationintensityisproportionaltotheappliedfieldintensityinisotropiclinearmedia
istheelectricpolarizationofthedielectric,apositiverealnumber.2.2.1Polarizationofdielectrics
Afterdielectricpolarization,theremaybeanetresidualchargeinside,whichiscalledthepolarizationvolumecharge6.Furtherdiscussiononpolarizationphenomenon
Afterdielectricpolarization,netresidualchargesmayalsoappearonthedielectricinterface,resultinginpolarizationsurfacecharges2.2.1PolarizationofdielectricsTherelationshipbetweent
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年醫(yī)療智慧養(yǎng)老平臺合同
- 2026年大型公共建筑承包合同
- 2025年中國科學(xué)院深??茖W(xué)與工程研究所招聘備考題庫(十三)帶答案詳解
- 2025年鯉城區(qū)東門實(shí)驗(yàn)小學(xué)頂崗合同教師招聘備考題庫及1套參考答案詳解
- 什邡市人力資源和社會保障局什邡市民政局關(guān)于2025年面向全市公開選調(diào)工作人員的備考題庫及一套參考答案詳解
- 2025年中國人民銀行清算總中心直屬企業(yè)銀清企業(yè)服務(wù)(北京)有限公司公開招聘備考題庫附答案詳解
- 2025年興業(yè)銀行廣州分行社會招聘備考題庫及一套完整答案詳解
- 2026年項(xiàng)目合作合同
- 2025年中國水利水電科學(xué)研究院水力學(xué)所科研助理招聘備考題庫及參考答案詳解一套
- 2025年興業(yè)銀行廣州分行社會招聘備考題庫及1套完整答案詳解
- 電動車轉(zhuǎn)讓合同協(xié)議書電子版
- 大學(xué)生創(chuàng)業(yè)計劃書word文檔(三篇)
- 材料科學(xué)基礎(chǔ)輔導(dǎo)與習(xí)題-上交課件 材料科學(xué)基礎(chǔ)教程及習(xí)題 上海交通大學(xué)
- YS/T 1019-2015氯化銣
- GB/T 39081-2020電阻點(diǎn)焊及凸焊接頭的十字拉伸試驗(yàn)方法
- GB/T 25390-2010風(fēng)力發(fā)電機(jī)組球墨鑄鐵件
- GA 38-2021銀行安全防范要求
- Mill準(zhǔn)則-吉林大學(xué)課程中心課件
- 湖南省城鄉(xiāng)規(guī)劃設(shè)計暫行收費(fèi)標(biāo)準(zhǔn)(行業(yè)指導(dǎo)價)
- 貓(貓的形態(tài)、習(xí)性、繁殖)-課件
- 仔豬腹瀉綜合防治(多圖詳解)課件
評論
0/150
提交評論