Electromagnetic Fields and Waves(電磁場與電磁波)課件 第1-4章 Vector analysis -Constant magnetic fields_第1頁
Electromagnetic Fields and Waves(電磁場與電磁波)課件 第1-4章 Vector analysis -Constant magnetic fields_第2頁
Electromagnetic Fields and Waves(電磁場與電磁波)課件 第1-4章 Vector analysis -Constant magnetic fields_第3頁
Electromagnetic Fields and Waves(電磁場與電磁波)課件 第1-4章 Vector analysis -Constant magnetic fields_第4頁
Electromagnetic Fields and Waves(電磁場與電磁波)課件 第1-4章 Vector analysis -Constant magnetic fields_第5頁
已閱讀5頁,還剩288頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

電磁場與電磁波Electromagnetic

Fieldsand

WavesChapter1Vectoranalysis1.1Vectorfundamentals1-1Scalarsandvectors標(biāo)量和矢量Magnitudeofvectors:Unitvectors(單位矢量):Scalars(標(biāo)量):Aquantityhasonlymagnitude.Algebraicdescriptionofvectors:Vectors(矢量):

Aquantityhasbothmagnitudeanddirection.

Itisusuallyrepresentedbyboldlettersorarrows.Geometricdescriptionofvectors:Avectorisgeometricallydescribedbyasegmentofadirectedstraight-line.GeometricdescriptionofvectorsConstantvectors(常矢量):Themagnitudeandthedirectionofavectorisconstant.

Vectorsaredescriptedbycoordinatecomponents(坐標(biāo)分量)zxy(1)VectorialadditionandsubtractionTheadditionandsubtractionoftwovectorsfollowtheparallelogramruleingeometrically,asshowninthefigure.Theadditionandsubtractionofoperationobeytheassociativeandcommutativelaws:1-2Vectoralgebraicoperation(矢量的代數(shù)運(yùn)算)矢量的加法矢量的減法TheadditionandsubtractionoftwovectorsinRectangularCoordinateSystem:Associativelaw結(jié)合律Commutativelaw交換律(2)Avectorismultipliedbyascalar(3)Dotproduct(點(diǎn)積)——DotproductofvectorsobeyCommutativelawq矢量與的夾角(4)Crossproduct(叉積)qsinABq矢量與的叉積TheycanbedescribedinRectangularCoordinateSystem:Determinant(行列式)form

:If,thenIf,then(5)Mixedoperationofvectors(混合運(yùn)算)——

Distributivelaw(分配律)——

Distributivelaw(分配律)——

Scalartripleproduct(標(biāo)量三重積)——

Vectortripleproduct(矢量三重積)1.2Scalarfields1.2.1DirectionalderivativeofascalarfieldThedirectionalderivativeofascalarfieldatapointrepresentstherateofchangeofascalarfieldinadirectionfromthepoint1.2ScalarfieldsThedirectionalderivativeofascalarfieldinthedirectionofapointisdefinedasInrectangularcoordinates:Thedirectioncosineofvectoris

,thenVector

Giscomposoedofthreecoordinatecomponents1.2.2Gradientofascalarfieldtheunitvectorofvectorlisthedirectionalderivativeofscalarfunction

alongthedirectionofvectorl

is1.2ScalarfieldsThevectoriscalledthegradientofthescalarfield

,denotedby1.2.2Gradientofascalarfield1.2ScalarfieldsInrectangularcoordinatesystem,theHamiltonianoperatorisdenotedbyThegradientexpressionofthescalarfunction

isWhere1.2ScalarfieldsIncylindricalcoordinatesystemAnimportantpropertyofgradientsisthatthecurlofgradientsisequaltozeroInsphericalcoordinatesystem1.2ScalarfieldsThegradientofascalarfieldisavectorwithafunctionofspacecoordinates.Themagnitudeofthegradientisthemaximumrateofchangeofthescalarfunction,whichisthemaximumdirectionalderivativevalueatthepointThedirectionofthegradientisthedirectionofthemaximumdirectionalderivativeofthepoint,perpendiculartotheisosurface,andpointingtothedirectionoftheincreasingfunctionvalue.thegradientofscalarfieldhasthefollowingthreecharacteristics:1.2Scalarfields

Solution:Accordingtothedefinitionofgradient,thegradientofthescalarfunctioncanbewrittenas

Example1-1givenascalarfunction

,findthegradientatpoint

.

itsmodulusis

Therefore,thegradientatpoint

thatis,themaximumdirectionalderivativeatpointis1.2ScalarfieldsExampleGiveaspatialscalarfield

(x,y,z)=x2+y2-z:(1)Findthegradientofthescalarfield

atthepointP(1,1,1),andfindtheunitvectorthatcanexpressthedirectionofthegradient;(2)Findthedirectionalderivativeof

alongthedirectionofunitvectorel=

excos60

+eycos45

+ezcos60

,andcomparethedirectionalderivativeatpointP(1,1,1)withthegradientofthispoint.Solution:

(1)Usinggradientformula,thegradientatpointPisUnitvectorcanbeexpressedas

(2)Usingtherelationshipbetweenthedirectionalderivativeandgradient,thedirectionalderivativealongthedirectionof

el

canbeobtainedasThevalueofthedirectionalderivativeatpointPcanbeobtainedasThegradientvalueatthepointPcanbeobtainedas

Apparently,

thegradientdescribesthemaximumrateofchangeofatpointP.Thatisthemaximumdirectionalderivative.Sotheformulaisforeveradmitted.1.3VectorFields1.Fluxofavectorfields

Thesurfaceintegralofvector

A

alongadirectedsurface

Siscalledthefluxofthevector

Athroughthedirectedsurface

S,expressedintermsofIfSisaclosedsurface,wegetThedirectedplaneelement——Thedirectedplaneelement——Theunitvectorinthedirectionofthepositivenormalofthedirectedplaneelement1.3.1FluxanddivergenceofvectorfieldThereisapositivesourceintheclosedsurfaceThereisanegativesourceintheclosedsurfaceTheclosedsurfaceisconsideredpassiveThreepossibleoutcomesoffluxofavectorfieldthroughaclosedsurface

Fromamacroscopicperspective,thefluxofaclosedsurfaceestablishestherelationshipbetweenthefluxofavectorfieldthroughtheclosedsurfaceandthesourcewithinthesurfacethatgeneratesthevectorfield.Thephysicalsignificanceofflux:1.3.1Fluxanddivergenceofvectorfield2.Divergenceofvectorfield

Inordertoshowthedistributionoffluxsourcesatanypointinthefield,theconceptoffluxdensity(divergence)isintroduced.

IftheclosedsurfaceS

contractsinfinitelytoapoint,thenthelimitoftheratioofthefluxofvectorA

throughtheclosedsurfaceStothevolumeenclosedbytheclosedsurfaceiscalledthedivergenceofthevectorfieldAatthatpoint,

Inrectangularcoordinatesystem,1.3.1FluxanddivergenceofvectorfieldThedivergenceofvectorfieldAcanbeexpressedasthescalarproductofHamiltonianoperatorandvector

A

Inrectangularcoordinatesystem,thedivergenceofvectorfieldAcanbeexpressedas1.3.1Fluxanddivergenceofvectorfield2.DivergenceofvectorfieldIncylindricalcoordinatesystemInsphericalcoordinatesystemInrectangularcoordinatesystemThedivergenceexpressionofvectorfield

A:1.3.1FluxanddivergenceofvectorfieldThethreecharacteristicsofvectorfielddivergenceareasfollows:Thedivergenceofvectorisascalarandafunctionofspatialcoordinates.Divergencerepresentstheintensityofthefluxsourceofavectorfieldfluxsourceofthevectorfieldwherethedivergenceisnotzero,whichisthebeginningorendofthevectorline.Inapassiveregion,thedivergenceofeachpointiszero.Ifthedivergenceofapointinthefieldisgreaterthanzero,thereisapositivesource.Ifthedivergenceislessthanzero,thereisanegativesourceatthispoint.Ifthedivergenceiszero,thepointispassive.1.3.1Fluxanddivergenceofvectorfield2.Divergenceofvectorfield3.Thedivergence

theorem體積的剖分VS1S2en2en1S

Thedivergencetheoremstatesthatthevolumeintegralofthedivergenceofavectorfieldisequaltothesurfaceintegralofthevectorfieldoveraclosedsurfaceenclosingthevolume.1.3.1Fluxanddivergenceofvectorfield

Thedivergencetheoremhastwoapplications:Intheviewofmathematical,thedivergencetheoremcanrealizetheconversionbetweentheclosedsurfaceintegralofvectorfunctionandthevolumeintegralofscalarfunction.Intheviewoffieldvector,thedivergencetheoremestablishestherelationshipbetweenthefieldinaregionVandthefieldsurroundingtheboundarysurfaceofthatregion.1.3.1Fluxanddivergenceofvectorfield3.Thedivergence

theoremThedivergenceofgradientofthescalarfunction

SecondorderdifferentialoperatorcalledLaplaceoperator

iscalledtheLaplaceoperator,anditsexpressioninrectangularcoordinatesystemis1.3.1FluxanddivergenceofvectorfieldInrectangularcoordinatesystemIncylindricalcoordinatesystemInsphericalcoordinates

system1.3.1FluxanddivergenceofvectorfieldThecirculationcandescribethevortexcharacteristicsofthevectorfieldandthevalueofthecirculationisproportionaltothevalueofthenetvortexsourcesurroundedby

l.1.ThecirculationofvectorfieldsThelineintegralofvectorfield

Aalongthedirectedclosedcurve

liscalledthecirculationofvectorfield

Aalongthecurve,1.3.2ThecirculationandcurlofvectorfieldsThecirculateddensitiesofvector

maybedifferentwithrespecttodirection.Thecirculationcanrepresentthesourceintensitywithvortexcharacteristics.Inordertoreflectthedistributionofvortexsourcesateachpointinthefield,thecirculationdensityisintroduced.2.Thecurlofvectorfield(1)Circulationintensity1.3.2ThecirculationandcurlofvectorfieldsThecurlofavectorfieldrepresentsthemaximumcirculationwithaunitareaofthevector.Characteristic:(2)CurlThecurlofvector

A

hasexpressedasthecrossproductoftheHamiltonoperator▽

andvector

A1.3.2ThecirculationandcurlofvectorfieldsFourcharacteristicsofthecurlofavectorfields:Thecurlofavectorfieldisavectorwithspacecoordinates.Thecurlvalueisthemaximumcirculationdensityatthespecificpoint.Thecurldirectionisthedirectionofthemaximumcirculationdensityatthespecificpoint.Thecirculationdensityofthecurlfieldisnotazeroandnonrotationalfield.Ontheotherhand,thecirculationdensityofthecurlfielddefinedasarotationalfieldanditsdensityiszeroeverywhere.(2)Curl1.3.2Thecirculationandcurlofvectorfields

Rectangularcoordinatesystem

CylindricalcoordinatesystemSphericalcoordinatesystem1.3.2Thecirculationandcurlofvectorfields3.Curltheorem

Thecurltheoremstatesthatthesurfaceintegralofthecurlofavectorfieldisequaltothelineintegralofthevectorfieldoveraclosedpathdefiningthearea.曲面的剖分Oppositedirectionsandequalmagnitudesresultincancellation

Thecurltheoremisanimportanttheoreminvectoranalysisandusedtoelectromagneticfieldtheory.1.3.2ThecirculationandcurlofvectorfieldsThecurltheoremhastwoapplications:

(1)Intheviewofthemathematical,thecurltheoremcanrealizetheconversionbetweenthesurfaceintegralofvectorfunctionandthelooprouteintegralofvectorfunction.

(2)Intheviewofthefield,thecurltheoremestablishestherelationshipbetweenthefieldinthesurfaceandthefieldontheboundarythatdefinestheregion.1.3.2Thecirculationandcurlofvectorfields3.Curltheorem4、散度和旋度的區(qū)別

1.3.2ThecirculationandcurlofvectorfieldsSolution:

GivenExample1-2

Findthedivergenceandcurlofthepositionvector

atanypoint(x,y,z)inspace.ThenSolution:

Example1-3

givenavector,trytosolve1.4Green’sTheorem&Helmholtz’sTheorem1.4.1Green’sTheorem1.LaplaceOperationConcept:——LaplaceoperatorRectangularcoordinatesystemCalculationformula:CylindricalcoordinatesystemSphericalcoordinatesystem

VectorLaplacianoperationConcept:namelyNote:Fornon-perpendicularcomponentsRectangularcoordinatesystem:Suchas:1.4.1Green’sTheorem2.Green’sTheorem

Lettwoscalarfields

and

becontinuousandsecondpartialderivativestotheregionVBasedontherelationshipbetweendirectionalderivativeandgradient,theaboveformulacanalsobewrittenasSV

,

1.4.1Green’sTheoremBasedontheaboveformulas,thefollowingtwoformulascanalsobeobtained:1.4.1Green’sTheoremTheabovetwoequationsarecalledtheGreen'ssecondtheorem.TheabovetwoequationsarecalledtheGreen'sfirsttheorem.SinceGreen'stheoremshowstherelationbetweenthefieldinregionandthefieldontheboundary,wecanuseGreen’stheoremtosolvetheproblemsbetweentheregionalfieldandtheboundaryfield.

Inaddition,Green'stheoremstatestherelationthattwofieldsshouldsatisfy.

Therefore,Green'stheoremiswidelyusedinvectoranalysisandelectromagneticfieldtheory.1.4.1Green’sTheorem

Ifthevectorfieldissingle-valuedeverywhereininfinitespace,anditsderivativeiscontinuousandbounded,andthesourcedistributionisinafiniteregion,thenwhenthedivergenceandcurlofthevectorfieldaregiven,thevectorfieldcanbeexpressedasWhere:

Helmholtz'stheoremstatesthatavectorfieldcanbedeterminedbyitsdivergenceandcurl

inanunboundedspatialregion.1.4.2Helmholtz’sTheoremaboundedregion

Inaboundedregion,thevectorfieldisnotonlyrelatedtothedivergenceandcurlwithintheregion,butalsotothetangentialandnormalcomponentsofthevectorfieldontheregion'sboundary.1.4.2Helmholtz’sTheorem1.Thedivergenceequationandcurlequationconstitutethedifferentialformsofthebasicequationsofavectorfield.Helmholtz'stheoremsummarizesthefundamentalpropertiesofvectorfields,anditssignificanceisextremelyimportant.2.Thefluxalongaclosedsurfaceandthecirculationalongaclosedpathconstitutetheintegralformsofthefundamentalequationsofavectorfield.1.4.2Helmholtz’sTheoremChapterSummaryKeypoints:Threecoordinatesystems,Threedegrees,ThreetheoremsGradient:Itindicatesthedirectionofthemaximumrateofchangeatapointinascalarfield,determinedbythepartialderivativesofthescalarfieldwithrespecttoeachcoordinate.ChapterSummaryDivergence:Itrepresentsthefluxdensityatapointinavectorfield,whichdependsonthepartialderivativesofthefieldcomponentswithrespecttotheirrespectivecoordinates,determinedbytherateofchangeofthefieldcomponentsintheirrespectivedirections.ChapterSummaryCurl:Itrepresentsthemaximumcirculationsurfacedensityatapointinthefield,whichdependsonthedifferentialofeachcoordinatecomponentofthevectorfieldwithrespecttothecoordinateintheperpendiculardirection.Itisdeterminedbytherateofchangeofeachfieldcomponentinthedirectionorthogonaltoit.Divergencetheorem:Itestablishestheconnectionbetweenthesurfaceintegralofaclosedsurfaceandthevolumeintegralofspace.Curltheorem:Itestablishestheconnectionbetweentheclosedcurveintegralandthesurfaceintegralenclosedbyit.Helmholtz’stheorem:Itpointsouttwodirectionsforstudyingspatialvectorfields.ChapterSummary電磁場與電磁波Electromagnetic

Fieldsand

WavesChapter2ElectrostaticFields2.1ElectrostaticFieldsinvacuum2.1.1ElectricFieldIntensity(2)Coulomb'slaw(1)Whatiselectrostaticfield?(3)Twotypesof"points"inthefield(4)Theelectricfieldintensitygeneratedbyapointcharge(5)Theelectricfieldintensitywhichisgeneratedbyadistributedcharge2.1.1ElectricFieldIntensity(1)Whatiselectrostaticfield?

Thechargesurroundsaspecialformofmattercalledanelectricfield.

Theelectricfieldactsasamechanicalforceonthechargeinit.①Theelectricfieldcausedbyachargeatrestwithrespecttotheobserverandwhosechargedoesnotchangewithtimeiselectrostaticfield.②Thebasicfieldquantityofelectrostaticfieldiselectricfieldintensity

.electrostaticfield:Theelectricfieldgeneratedbyastationarycharge.Importantcharacteristic:Theelectricfieldexertsaforceonchargeslocatedwithinit.2.1.1ElectricFieldIntensity

Forcebetweentwo-pointchargesq1andq2inaninfinitevacuum:(2)Coulomb’sLawThedielectricconstantofvacuum2.1.1ElectricFieldIntensityElectricfieldforceobeysthesuperpositiontheoremqq1q2q3q4q5q6q72.1.1ElectricFieldIntensity(3)twotypesof"points":fieldpointandsourcepointThesourcepoint:thelocationofthefieldsource(suchaspointcharge)orThefieldpoint:wherethefieldquantityneedstobedeterminedorThedistancevectorfromthesourcetothefieldpoint:Iftherearemultiplesourcepoints,thedistancevectorfromtheoriginofcoordinatestothesourcepointisTheunitvectorisHasnpointcharges

respectivelylocatedinTheforceactonpointcharge

locatedin(4)ElectricFieldIntensityofapointchargeandasystemofpointchargesWhatifthechargeiscontinuouslydistributed?TheelectricfieldintensityofthepointchargeElectricFieldIntensity——Testcharge

2.1.1ElectricFieldIntensity(5)

ElectricFieldIntensityofdistributedchargeThevolumechargedensity:Thesurfacechargedensity:Thelinechargedensity:Theelementcharge

:2.1.1ElectricFieldIntensityWecandivideanydistributedchargeintomanyelementcharges,andtreateachelementchargeasapointcharge.Inaninfinitevacuum,accordingtothecalculationformulaoffieldintensitygeneratedbypointcharge,theelementfieldintensityatthefieldpoint(r)generatedbytheelementcharge

dq

at(r’)isByapplyingthesuperpositionprinciple,thefieldintensityatthefieldpoint(r)canbeobtainedbyintegratingallthefieldsourcecharges(5)

ElectricFieldIntensityofdistributedchargeElectricfieldgeneratedbychargesinasmallvolumeelementSurfacedistributedchargeLine-distributedchargeElectricfieldintensitygeneratedbyuniformlyvolume-distributedcharge(5)

ElectricFieldIntensityofdistributedchargeElectricfieldintensityofseveraltypicalchargedistributions(infinitelength)(finitelength)均勻帶電直線段均勻帶電圓環(huán)auniformlychargedstraightlinesegment:theaxisofauniformlychargedcircularring:Example:Findtheelectricfieldcausedbyaninfinitelylonglinechargeuniformlydistributedwithlinedensity

invacuum,asshowninthefigure.Whenthedisplacementofq0isdl,theworkdonebytheelectricfieldforceis

ThevoltagefromPtoQis1.Definitionofvoltage2.1.2ElectricPotentialIfq0ismovedfrompointPtopointQ,thetotalworkdonebytheelectricfieldforceisThevoltagebetweentwopointsisequaltotheworkdonebytheelectricfieldforcewhenaunitpositivechargeismovedbetweentwopoints.Thevoltagebetweenanytwopointsinanelectrostaticfieldisequaltothelineintegraloftheelectricfieldintensity.Ifthechargemoves

alonganyclosedpath

intheelectrostaticfield,theworkdonebytheelectricfieldforceisequaltozero.2.Theelectrostaticfieldisaconservationfield2.1.2ElectricPotentialThelooprouteintegraloftheelectricfieldintensityvector

ETheelectrostaticfieldisaconservativefield.3.Definitionandcalculationofpotential2.1.2ElectricPotentialThepotentialofapointinanelectricfieldisdefinedastheworkdonebytheforceoftheelectricfieldtomoveaunitpositivechargefromthatpointtoapointofzeropotential(thereferencepoint).IfpointQistakenasthepotentialreferencepointThepotentialatthereferencepointisobviouslyzero.Thepotentialofapointatinfinityisusuallychosentobezero2.1.2ElectricPotential

ThepotentialofapointchargeqattheoriginofthecoordinatesinavacuumatadistancerIfthefieldsourcehasnpointcharges,thepotentialatthefieldpoint(r)canbeobtainedbyapplyingthesuperpositionprincipleWherethefieldsourcecontainsvariousdistributedcharges3.Definitionandcalculationofpotential2.1.3TherelationshipbetweenelectricfieldintensityandpotentialThecurlofthegradientofanyscalarisequaltozero1.FromEto2.FromtoEBecauseof

,applythecurltheoremtheelectrostaticfieldisanon-rotationalfieldTheelectricfieldintensityisequaltothenegativegradientofpotentialSolution:Example2-2Figureshowsthelinechargeofacircularringwithradiusa(linechargedensity

)onthexOyplaneinvacuum.TrytodeterminethepotentialandelectricfieldintensityatpointPontheaxiszawayfromthecenterofthecircle.Accordingtotheanalysis,thefieldintensityhasonlyzcomponentExample2-3Figureshowsauniformlychargeddiskwithradiusaandsurfacechargedensity

.Findtheelectricfieldintensityontheaxisofthedisk.ThepotentialgeneratedbythechargeontheentirediskatpointPisSolution:Takearingwithradiusrandwidthdr

onthedisk,andthepotentialgeneratedbytheelementcharge

ontheringatpointPontheaxisisTheobtainableelectricfieldintensityisApplythegradientexpressionincylindricalcoordinatesystemIftheradiusofthedisctendstoinfinityExample

Findthepotentialofauniformlychargedwirewithalengthof2Landachargedensityof

.xyzL-L

Solution:Usingcylindricalcoordinates,letthelinechargecoincidewiththez-axis,withthemidpointlocatedatthecoordinateorigin.Duetoaxialsymmetry,theelectricpotentialisindependentofz.When

Theaboveexpressionbecomesinfinitebecausethechargeisnotdistributedwithinafinitearea,andthepotentialreferencepointischosenataninfinitelydistantpoint.Anarbitraryconstantcanbeaddedtotheaboveformula,resultinginSelectingthepointwhereρ=aasthepotentialreferencepoint,wehave①

Electricfieldline(Eline)E

lineisacurveonwhichthedirectionofthetangentlineateachpointisthesameasthedirectionofthefieldintensityatthatpoint.IfdlrepresentstheelementsegmentonE

line,theE=kdl,namelyEx=kdx,Ey=kdy,

Ez=kdz,

andthedifferentialequationoflineinrectangularcoordinatesystemis:2.1.4Thedistributionpatternofthefield②EquipotentialsurfaceandequipotentiallineTheequationoftheequipotentialsurfaceisthefollowingTheequipotentialsurfaceandthefieldlineareperpendiculareverywhere.Thedensertheequipotentialdistribution,thegreaterthefieldintensity.等位線的切線等位線PαEP‘dlExample2-4DeterminetheequationofElineinpointchargefield.zxyP(x,y,z)orqSolution:Supposepointchargeislocatedattheoriginofcoordinates,thenFromdifferentialequation

get2.2ElectrostaticFieldsindielectrics2.2.1Polarizationofdielectrics

Theresponseofamediumtoanelectromagneticfieldcanbedividedintothreecases:

polarization,magnetization,andconduction.

Theparametersthatdescribetheelectromagneticpropertiesofamediumare:

dielectricconstant,magneticpermeability,andconductivity.1.Propertiesofconductorsinelectrostaticequilibrium(1)Thefieldintensityintheconductorshouldbezero;(2)Conductorsareequipotential,andthepotentialsateachpointareequal;(3)Thedirectionofthefieldintensityatanypointontheconductorsurfacemustbeperpendiculartotheconductorsurface;(4)Iftheconductorischarged,thechargecanonlybedistributedonthesurface.2.2.1Polarizationofdielectrics2.dielectricsTheparticlesinsideadielectriccanmoveslightlyundertheactionofanexternalelectricfield,butcannotleavetherangeofmolecules.Thechargecarriedbytheparticlesinsidethedielectriciscalledboundcharge.Anidealmedium,alsocalledaninsulator,isamediumwithzeroelectricalconductivity.

2.2.1Polarizationofdielectrics2.dielectricsThedielectriclosesitsdielectricpropertyandbecomesaconductorundertheactionofastrongenoughelectricfield,whichiscalleddielectricbreakdown.Thecorrespondingvoltageiscalledbreakdownvoltage,andthefieldintensityatthetimeofbreakdowniscalledbreakdownfieldintensity.2.2.1Polarizationofdielectrics3.ElectricdipoleElectricdipolereferstotwoelectricchargeswithoppositesignsandequalvaluesthatareveryclosetoeachother.Electricdipolemoment:Thedirectionofpisfromthenegativechargetothepositivecharge.Anelectricdipolecausesanelectricfieldaroundit,anditisalsosubjecttoaforceinanexternalelectricfield.2.2.1Polarizationofdielectrics4.PolarizationofdielectricUndertheactionofanappliedelectricfield,theboundchargeinthemediumshifts.Thephenomenoniscalledpolarization.Insidethepolarizedmediumappearanumberofelectricdipolesarrangedinroughlythesamedirection,theseelectricdipoleswillproduceanelectricfield.2.2.1Polarizationofdielectrics1)Undertheinfluenceofanexternalelectricfield,adielectricmaterialwillundergopolarization.2)Thedegreeofpolarizationisdeterminedbythemagnitudeoftheelectricdipolemomentwithinthemedium.4.PolarizationofdielectricTheelectricfieldinapolarizedmediumisthecompositeoftheexternallyappliedelectricfieldandtheelectricfieldoftheelectricdipole.2.2.1PolarizationofdielectricsUniformmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofspatialcoordinates.Isotropicmedium:Thecharacteristicsofthemediumdonotchangewiththechangeofthedirectionoftheelectricfieldquantity,otherwiseitisanisotropicmedium,suchasdiode.Linearmedium:theparametersofthemediumdonotchangewiththechangeoftheelectricfieldquantity.4.PolarizationofdielectricCommontermsformediaareasfollows.2.2.1Polarizationofdielectrics5.PolarizationintensityDefinition:thevectorsumoftheelectricdipolemomentintheunitvolumeafterpolarization

Theexperimentalresultsshowthatthepolarizationintensityisproportionaltotheappliedfieldintensityinisotropiclinearmedia

istheelectricpolarizationofthedielectric,apositiverealnumber.2.2.1Polarizationofdielectrics

Afterdielectricpolarization,theremaybeanetresidualchargeinside,whichiscalledthepolarizationvolumecharge6.Furtherdiscussiononpolarizationphenomenon

Afterdielectricpolarization,netresidualchargesmayalsoappearonthedielectricinterface,resultinginpolarizationsurfacecharges2.2.1PolarizationofdielectricsTherelationshipbetweent

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論