版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年英語(yǔ)考研閱讀理解長(zhǎng)難句解析與解題策略試卷考試時(shí)間:______分鐘總分:______分姓名:______PartAReadingComprehensionDirections:Inthepassagebelow,eachsentenceisfollowedbyfourchoicesmarkedA),B),C)andD).YoushoulddecideonthebestchoiceandmarkthecorrespondingletteronAnswerSheet2withasinglelinethroughthecentre.Arecentstudyonurbancommutingpatternshasrevealedsomeinteresting,albeitsomewhatcounterintuitive,findingsregardingtherelationshipbetweentraveltimeandjobsatisfaction.Traditionalwisdomsuggeststhatlongercommutesleadtoincreasedstressanddecreasedjobsatisfaction,asindividualsspendmoretimetravelingandhavelesstimeforpersonalactivities.However,thestudy'sresultsindicatethatthisrelationshipisnotstraightforward.Infact,formanyprofessionals,particularlythosewhoworkinhigh-payingfieldssuchasfinanceandtechnology,longercommutescanbeassociatedwithhigherlevelsofjobsatisfaction.Theresearchershypothesizedthatthekeyfactorinfluencingjobsatisfactioninthiscontextisnotthemeredurationofthecommute,butrathertheperceivedvalueofthejob.Individualswhofeelthattheirjobprovidessignificantpersonalandfinancialrewardsmaybewillingtoendurelongercommutesiftheybelievethebenefitsoutweighthecosts.Conversely,thosewhoarelesssatisfiedwiththeirjobmayfindevenshortcommutestobeasourceoffrustrationandstress.Oneofthestudy'smostsurprisingfindingswasthepositivecorrelationobservedbetweencommutedurationandjobsatisfactionamongemployeesincertainindustries.Forinstance,softwareengineersandinvestmentbankersinmajormetropolitanareasoftenreporthighlevelsofjobsatisfactiondespitespendingtwoorthreehourseachwaycommutingtowork.Thisphenomenonappearstobedrivenbyacombinationoffactors,includingthehighdemandforskilledprofessionalsinthesefields,whichtranslatesintocompetitivesalariesandcareeradvancementopportunities.Additionally,manyoftheseworkersviewtheircommutesasanecessaryinvestmentintheircareers,ratherthanaburden.Theimplicationsofthisstudyforurbanplanningandworkplacepolicyaresignificant.Iflongercommutesdonotnecessarilyequatetolowerjobsatisfactionforcertainsegmentsoftheworkforce,thenemployersmayhavemoreflexibilityinlocatingtheirofficesinareasthatoffergreateraccesstohousingorotheramenities,withoutsacrificingemployeecontentment.Similarly,policymakersmightconsiderrevisingtransportationpoliciestofocusmoreonefficiencyandconvenience,ratherthansimplyminimizingtraveltime.Afterall,therelationshipbetweencommutingandjobsatisfactionismorecomplexthanitfirstappears.Furthermore,thestudyhighlightstheimportanceofindividualperceptionindeterminingjobsatisfaction.Twopeoplemayexperiencethesamecommute,buttheirsubjectiveevaluationsofthatexperiencecandiffergreatly.Forexample,anindividualwhoviewstheircommuteasatimetorelaxandlistentopodcastsmayperceiveitasapositiveaspectoftheirday,whereassomeonewhoviewsitasatediousandunavoidablenecessitymayexperienceitasasignificantsourceofstress.Thisunderscorestheneedforpersonalizedapproachestomanagingthechallengesofurbancommuting.Thefindingsalsoraisequestionsaboutthenatureofworkitselfinthemoderneconomy.Asmorejobsbecomeremoteorflexible,thetraditionalmodelofthedailycommutemaybecomelessrelevant.Thisshiftcouldpotentiallyleadtogreaterjobsatisfactionforsomeworkers,astheywouldbeabletoeliminatecommutesaltogetherorreducetheirdurationsignificantly.However,itcouldalsocreatenewchallenges,suchasdifficultiesinseparatingworkfrompersonallifewhenworkingfromhome.Thelong-termimpactofthesechangesonjobsatisfactionremainstobeseen,butitisclearthattherelationshipbetweencommutingandjobsatisfactionisevolvinginresponsetotechnologicalandsocietalshifts.C)Thestudy'sfindingschallengetheconventionalviewthatlongercommutesinevitablyleadtolowerjobsatisfaction.D)Theresearchersbelievethattheperceivedvalueofajobistheprimarydeterminantofjobsatisfactionforcommuters.Accordingtothepassage,whatisthemainreasonwhysomeprofessionalswithlongcommutesreporthighlevelsofjobsatisfaction?A)Theyderivesignificantpersonalenjoymentfromtheirdailytravelexperiences.B)Theybelievethattheircommutesareanecessaryinvestmentintheircareerdevelopment.C)Theyliveinareaswithbetterpublictransportationsystems.D)Theyarecompensatedwithhighersalariestooffsetthetimespentcommuting.Thepassagesuggeststhatwhichofthefollowingfactorsmaycontributetothepositivecorrelationbetweencommutedurationandjobsatisfactionincertainindustries?A)Theavailabilityofaffordablehousingnearmajortransportationhubs.B)Thehighdemandforskilledprofessionals,leadingtocompetitivesalariesandcareeropportunities.C)Theimplementationofflexibleworkschedulesbyemployers.D)Thepresenceofnumerousrecreationalactivitiesalongthecommuteroutes.Whatdoesthepassageimplyabouttheroleofurbanplannersandpolicymakersinlightofthestudy'sfindings?A)Theyshouldprioritizethedevelopmentofpublictransportationtoreducecommutetimes.B)Theyshouldfocusoncreatingmorejobopportunitiesinareaswithhighhousingcosts.C)Theyshouldconsiderthediverseneedsofcommuterswhendesigningtransportationpolicies.D)Theyshouldencourageemployerstolocatetheirofficesfartherfromresidentialareas.Accordingtothepassage,howmighttheriseofremoteworkaffecttherelationshipbetweencommutingandjobsatisfaction?A)Itcouldleadtoincreasedjobsatisfactionforallworkersbyeliminatingtheneedforcommutes.B)Itmightcreatenewchallengesforworkerswhostruggletomaintainwork-lifeboundaries.C)Itwillhavenosignificantimpactonjobsatisfactionsincemostjobswillremainintraditionalofficesettings.D)Itwillprimarilybenefitworkersinfieldsthatrequirefrequentface-to-faceinteractions.Thepassageindicatesthatwhichofthefollowingisakeyfactorinfluencinganindividual'sperceptionoftheircommute?A)Thephysicaldistancetraveledduringthecommute.B)Themodeoftransportationusedforthecommute.C)Theindividual'spersonalattitudesandexpectationsregardingtravel.D)Theavailabilityofentertainmentoptionsduringthecommute.Theresearchers'hypothesisinthestudyisbestdescribedas:A)Longercommutesleadtohigherstresslevels,whichnegativelyimpactjobsatisfaction.B)Thedurationofthecommuteisthemostsignificantfactoraffectingjobsatisfaction.C)Jobsatisfactionisprimarilydeterminedbytheperceivedvalueofthejob,regardlessofcommutelength.D)Commuterswhoaresatisfiedwiththeirjobsarewillingtoendurelongercommutesforfinancialrewards.Thepassageprovidesanexampleofsoftwareengineersandinvestmentbankerstoillustrate:A)Thenegativeeffectsoflongcommutesonmentalhealth.B)Theimportanceofflexibleworkarrangementsforhigh-earningprofessionals.C)Howcertainindustriescantoleratelongercommutesduetohighjobsatisfaction.D)Theroleofcareeradvancementopportunitiesincompensatingforlongtraveltimes.Whichofthefollowingstatementsissupportedbytheinformationinthepassage?A)Allprofessionalsinhigh-payingfieldsareequallysatisfiedwiththeirjobsdespitelongcommutes.B)Urbanplannersshouldprioritizetheconstructionofhousingnearworkplacestoreducecommutes.C)Therelationshipbetweencommutingandjobsatisfactionisinfluencedbyindividualperceptionsandjobvalue.D)Employersshouldavoidlocatingtheirofficesinareaswithlongcommutestomaintainemployeesatisfaction.Thepassagesuggeststhatwhichofthefollowingmightbeafuturetrendintheworkplace?A)Thecompleteeliminationofoffice-basedworkinfavorofremotework.B)Acontinuedemphasisonminimizingcommutetimesasakeyfactorinjobsatisfaction.C)Thedevelopmentofnewtransportationtechnologiestomakecommutesmoreenjoyable.D)Greaterflexibilityinworkarrangementstoaccommodatevaryingcommutingpatterns.PartBReadingComprehensionDirections:Thefollowingpassageisfollowedbysomequestions.Readthepassagecarefullyandthenanswerthequestionsbasedonwhatisstatedorimpliedinthepassage.WriteyouranswersneatlyonAnswerSheet2.Intherealmofartificialintelligence(AI),theconceptof"deeplearning"hasemergedasarevolutionaryapproach,enablingmachinestolearnfromexperienceandunderstandtheworldthroughahierarchyofconcepts.Unliketraditionalmachinelearningalgorithmsthatrelyonfeatureextractionbyhumanexperts,deeplearningmodelsuseneuralnetworkswithmultiplelayers(hencetheterm"deep")toautomaticallylearntherepresentationsneededfordetectionorclassification.Thisabilitytolearnhierarchicalfeatureshasmadedeeplearningparticularlysuccessfulinareassuchascomputervision,naturallanguageprocessing,andspeechrecognition.Thefoundationofdeeplearningliesinneuralnetworks,whichareinspiredbythestructureandfunctionofthehumanbrain.Thesenetworksconsistofinterconnectednodes,or"neurons,"organizedintolayers.Eachneuronreceivesinputfromthepreviouslayer,processesitusingamathematicaloperation,andpassestheoutputtothenextlayer.Theprocessisrepeatedacrossmultiplelayers,allowingthenetworktolearnincreasinglycomplexpatternsandrepresentations.The"depth"ofthenetworkreferstothenumberoflayersitcontains,anddeepernetworkscanpotentiallylearnmoreabstractandnuancedfeatures.Oneofthekeyadvantagesofdeeplearningisitsabilitytohandlelargeamountsofdataefficiently.Thehierarchicallearningprocessenablesthenetworktoautomaticallydiscoverthemostrelevantfeaturesfromtherawdata,eliminatingtheneedformanualfeatureengineering.ThishasledtosignificantimprovementsintheperformanceofAIsystemsacrossvariousdomains.Forinstance,deeplearningmodelshaveachievedstate-of-the-artresultsinimagerecognitiontasks,surpassinghuman-levelaccuracyinsomecases.However,deeplearningalsofacesseveralchallenges.Onemajorchallengeistherequirementforlargeamountsoflabeleddatatotrainthemodelseffectively.Unliketraditionalmachinelearningalgorithmsthatcansometimesperformwellwithsmallerdatasets,deeplearningmodelsneedextensivetrainingdatatogeneralizewelltonew,unseenexamples.ThishasledtoconcernsaboutdataprivacyandtheethicalimplicationsofusinglargedatasetsfortrainingAImodels.Anotherchallengeisthecomputationalcostassociatedwithtrainingdeeplearningmodels.Theprocessoftrainingadeepneuralnetworkinvolvesalargenumberofcomputations,whichcanbecomputationallyintensiveandtime-consuming.Thishasnecessitatedthedevelopmentofspecializedhardware,suchasgraphicsprocessingunits(GPUs)andfield-programmablegatearrays(FPGAs),toacceleratethetrainingprocess.Despitetheseadvancements,trainingdeepmodelsremainsasignificantbottleneckinthedeploymentofAIsystems.Recentadvancementsindeeplearninghavefocusedonaddressingthesechallenges.Techniquessuchastransferlearningandunsupervisedlearninghavebeendevelopedtoreducethedependencyonlargelabeleddatasets.Transferlearninginvolvesleveragingpre-trainedmodelsonlargedatasetsandfine-tuningthemforspecifictasks,whileunsupervisedlearningmethodsaimtolearnmeaningfulrepresentationsfromunlabeleddata.Theseapproacheshaveshownpromisingresultsinreducingtheamountoflabeleddatarequiredandimprovingthegeneralizationperformanceofdeeplearningmodels.Theimpactofdeeplearningonsocietyhasbeenprofound.Inhealthcare,deeplearningmodelshavebeenusedtoanalyzemedicalimages,assistindiagnosis,andpredictpatientoutcomes.Inautonomousvehicles,deeplearningplaysacrucialroleinobjectdetection,navigation,anddecision-making.Innaturallanguageprocessing,deeplearninghasenabledadvancementsinmachinetranslation,sentimentanalysis,andchatbots.Theseapplicationsdemonstratetheversatilityandpotentialofdeeplearningintransformingvariousindustriesandimprovinghumanlives.Despiteitssuccess,deeplearningisnotwithoutitslimitations.Onelimitationisthelackofinterpretabilityandtransparencyinthedecision-makingprocessofdeeplearningmodels.Unliketraditionalalgorithmsthatprovideclearrulesformakingpredictions,deeplearningmodelsoftenoperateas"blackboxes,"makingitdifficulttounderstandhowtheyarriveatspecificdecisions.Thislackofinterpretabilityhasraisedconcernsaboutthereliabilityandtrustworthinessofdeeplearningsystems,particularlyincriticalapplicationssuchashealthcareandfinance.Anotherlimitationisthepotentialforbiasindeeplearningmodels.Thesemodelslearnfromthedatatheyaretrainedon,andifthetrainingdatacontainsbiases,themodelwilllearnandperpetuatethesebiases.Thishasledtoissuessuchasracialandgenderbiasesinfacialrecognitionsystemsandpredictivepolicingalgorithms.Addressingthesebiasesrequirescarefuldatasetcuration,algorithmicfairnesstechniques,andongoingmonitoringtoensurethatdeeplearningmodelsarefairandequitable.FutureresearchindeeplearningislikelytofocusonaddressingtheselimitationsanddevelopingmorerobustandreliableAIsystems.EffortsarebeingmadetoimprovetheinterpretabilityofdeeplearningmodelsthroughtechniquessuchasattentionmechanismsandexplainableAI(XAI)methods.Thesemethodsaimtoprovideinsightsintothedecision-makingprocessofdeeplearningmodels,makingthemmoretransparentandunderstandabletohumans.Additionally,researchisongoingtodevelopmoreinclusiveandunbiaseddeeplearningmodels.Thisincludeseffortstodiversifytrainingdatasets,incorporatefairnessconstraintsintothetrainingprocess,andevaluatemodelsfortheirpotentialbiases.Byaddressingtheseissues,thegoalistoensurethatdeeplearningmodelsarefair,equitable,andbeneficialforallmembersofsociety.Inconclusion,deeplearninghasemergedasapowerfulandtransformativeapproachinthefieldofartificialintelligence.Itsabilitytolearnhierarchicalfeaturesfromlargedatasetshasledtosignificantadvancementsinvariousdomains.However,deeplearningalsofaceschallengesrelatedtodatarequirements,computationalcosts,interpretability,andbias.Ongoingresearcheffortsarefocusedonaddressingthesechallengesanddevelopingmorerobust,reliable,andequitableAIsystems.Asdeeplearningcontinuestoevolve,itholdsthepotentialtorevolutionizenumerousindustriesandimprovehumanlivesinprofoundways.Whatisthemainpurposeofthepassage?A)Toprovideacomprehensiveoverviewofdeeplearninganditsapplications.B)Toargueagainsttheuseofdeeplearningduetoitslimitations.C)Toexplainthetechnicaldetailsofneuralnetworksandtheirroleindeeplearning.D)Toproposenewresearchdirectionsfordeeplearninginthefuture.Accordingtothepassage,whatisoneofthekeyadvantagesofdeeplearning?A)Itsabilitytoperformwellwithsmalldatasets.B)Itsrelianceonmanualfeatureengineering.C)Itsuseofneuralnetworkswithmultiplelayerstoautomaticallylearnrepresentations.D)Itsrequirementforspecializedhardwarefortraining.Thepassagementionswhichofthefollowingasachallengefacedbydeeplearning?A)Theneedformanualfeatureextraction.B)Thehighcomputationalcostoftrainingmodels.C)Thelackofinterpretabilityinthedecision-makingprocess.D)Therelianceonsmalllabeleddatasets.Whichofthefollowingstatementsissupportedbytheinformationinthepassage?A)Deeplearningmodelsareonlyusefulinthefieldofcomputervision.B)Thedevelopmentofspecializedhardwarehaseliminatedthecomputationalchallengesofdeeplearning.C)Transferlearningandunsupervisedlearningaretechniquesusedtoaddressthechallengesofdeeplearning.D)Deeplearningmodelsarecompletelyunbiasedandfair.Thepassagesuggeststhatwhichofthefollowingmightbeafuturetrendindeeplearningresearch?A)Thecompleteabandonmentofsupervisedlearninginfavorofunsupervisedlearning.B)Agreaterfocusontheinterpretabilityandtransparencyofdeeplearningmodels.C)Thedevelopmentofdeeplearningmodelsthatareexclusivelyusedforhealthcareapplications.D)Thereductionofthecomputationalcostoftrainingdeeplearningmodelstothepointwhereitisnolongerachallenge.Thepassagementionswhichofthefollowingasalimitationofdeeplearning?A)Itsinabilitytohandlelargeamountsofdataefficiently.B)Itsrelianceoninterpretabilityandtransparencyinthedecision-makingprocess.C)Itspotentialforbiasandlackoffairness.D)Itslimitedapplicationsinvariousindustries.Thepassageindicatesthatwhichofthefollowingisagoalofongoingresearchindeeplearning?A)Toreducethedependencyonlargelabeleddatasets.B)Toeliminatetheneedforspecializedhardwareindeeplearningtraining.C)Todevelopdeeplearningmodelsthatareexclusivelyusedforfacialrecognition.D)Tomakedeeplearningmodelscompletelyunbiasedandfair.Thepassagesuggeststhatwhichofthefollowingfactorscontributestothesuccessofdeeplearninginvariousdomains?A)Itsrelianceonmanualfeatureengineering.B)Itsabilitytohandlelargeamountsofdataandautomaticallylearnrepresentations.C)Itsrequirementforsmalllabeleddatasets.D)Itsuseoftraditionalmachinelearningalgorithms.Thepassagementionswhichofthefollowingasanapplicationofdeeplearning?A)Predictivepolicingalgorithms.B)Facialrecognitionsystems.C)Machinetranslationandsentimentanalysis.D)Traditionalmachinelearningalgorithms.Thepassagein
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 承包超市協(xié)議書(shū)
- 承攬爆破協(xié)議書(shū)
- 捷克簽署協(xié)議書(shū)
- 擔(dān)保追償協(xié)議書(shū)
- 拆遷搬空協(xié)議書(shū)
- 拆除清理協(xié)議書(shū)
- 擋光補(bǔ)償協(xié)議書(shū)
- 敵軍妥協(xié)協(xié)議書(shū)
- 方太合作協(xié)議書(shū)
- 中職第二學(xué)年(廣告文案)宣傳文案創(chuàng)作2026年綜合測(cè)試題及答案
- 深圳市龍崗區(qū)2025年生物高一上期末調(diào)研模擬試題含解析
- 欄桿勞務(wù)分包合同范本
- 2025年黃帝內(nèi)經(jīng)章節(jié)題庫(kù)及答案
- 具身智能+醫(yī)療康復(fù)中多模態(tài)感知與自適應(yīng)訓(xùn)練系統(tǒng)研究報(bào)告
- 廣東省深圳市寶安區(qū)2026屆高一上生物期末聯(lián)考試題含解析
- 2025-2026學(xué)年上學(xué)期高二化學(xué)蘇教版期中必刷??碱}之化學(xué)反應(yīng)速率與化學(xué)平衡(解答題)
- 自動(dòng)化生產(chǎn)線調(diào)試與安裝試題及答案
- GB/T 7986-2025輸送帶滾筒摩擦試驗(yàn)
- 2025秋期版國(guó)開(kāi)電大本科《管理英語(yǔ)4》一平臺(tái)綜合測(cè)試形考任務(wù)在線形考試題及答案
- 洗衣房安全培訓(xùn)課件
- 玻纖拉絲工專業(yè)知識(shí)考核試卷及答案
評(píng)論
0/150
提交評(píng)論