版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
多元線性回來與最小二乘估計
1.假定條件、最小二乘估計量和高斯一馬爾可夫定理
多元線性問來模型:
>7=Bo+BIHI+BBS+...+Bhix〃-i+〃,(1.1)
其中M是被說明變量(因變量),期是說明變量(自變量),均是隨機(jī)誤差項,m,i=(),1,…,
k-\是回來參數(shù)(通常未知)。
對經(jīng)濟(jì)問題的實際意義:乃與句存在線件關(guān)系,為人j=0,1,...,;-1,是),,的重要
說明變量。如代表眾多影響力變更的微小因素。使X的變更偏離了E(M=多元線性回
來與最小二乘估計
1.假定條件、最小二乘估計量和高斯一馬爾可夫定理
多元線性回來模型:
yt=Po+3ix/i+P2X/2+...+8上1為卜1+出(M)
其中,是被說明變量(因變量),切是說明變量(自變量),也是隨機(jī)誤差項,/=0,1,
k-1是回來參數(shù)(通常未知)。
對經(jīng)濟(jì)問題的實際意義:y與叼存在線性關(guān)系,即力/=0,1,…,八1,是M的重要說明
變量。出代表眾多影響M變更的微小因素。使M的變更偏離了E(川=Bo+Bix,i+B洶2+…+
Bk-\xtk.x確定的k維空間平面。
當(dāng)給定一個樣本(M,即1,即2,…,Xrjt.1),t=1,2,…,7時,上述模型表示為
yi=0o+3i^n+3jxi2+...+Bk可★/+經(jīng)濟(jì)意義:M?是M的重要說明變量。
3^2=3o+131X21+P2X22+…+Bh1X2hl+"2,代數(shù)意義:州與切存在線性關(guān)系,
......幾何意義:表示一個多維平面。
yr=M+B+BKT2+...+Pk-IXTA-I+UT,(1.2)
止匕時yt與x”已如,B/與未知。
(13)
y=xB+“,(1.4)
為保證得到最優(yōu)估計量,回來模型(1.4)應(yīng)滿意如下假定條件。
假定⑴隨機(jī)誤差項場是非自相關(guān)的,每一誤差項都滿意均值為零,方差戲相同且
為有限值,即
〃o
?
圾?
S4-工O.
>—?_
E(?)=0=Var(w)=E(Mw')=o2/=o-■
O/=.
假定⑵說明變量與誤差項相互獨立,即
E(Xu)=0.
假定⑶說明變量之間線性無關(guān)。
rk(X'X)=rk(X)=k.
其中rk(.)表示矩陣的秩。
假定⑷說明變量是非隨機(jī)的,且當(dāng)7-8時
T]X'X-Q.
其中。是一個有限值的非退化矩陣。
最小二乘(OLS)法的原理是求殘差(誤差項的估計值)平方和最小.代數(shù)卜是求極值
問題。
minS=(Y-Xfiy(Y-Xfl)=Y'Y-fl,X,Y-YXfl+p'X'Xp
=Y'Y-2P'X'Y+8'X'XB'(1.5)
因為是一個標(biāo)量,所以有=P'X'Y.(1.51的一階條件為:
畛=-2XY+2X%6=0(1.6)
化簡得
X'Y=X'Xp
因為(X'X)是一個非退化矩陣(見假定(3)),所以有
fi=(X'XylXY(1.7)
因為(1.5)的二階條件
L.=2X'X>0(1.8)
b
得到滿意,所以(1.7)是(1.5)的解。
因為X的元素是非隨機(jī)的,(x,x)?,是一個常數(shù)矩陣,則e是y的線性組合,為線性
估計量。
求出6,估計的回來模型寫為
Y=Xfi+u(1.9)
其中£=(瓦A...北一)'是B的估計值列向量,6=(y-xf)稱為殘差列向量。因為
it=Y-xfi=y-x(X'xy]xY=[I-X(X'xy]x']Y(I.IO)
所以小也是y的線性組合,》的期望和方差是
E(6)=E[(X'XfX'Y]=E[(X'X)AX\XB+u)]
=B+(XB(l.H)
Var(1)=E[(/-6)(/-B)口=E[(X'X)"X'〃■X(X'X)」]
=E[(X,XyxX'a2IX(X'X]A]=o2(X'X)-'.(1.12)
高斯一馬爾可夫定理:若前述假定條件成立,OLS估計量是最佳線性無偏估計量,分具
有無偏性。液具有最小方差特性。液具有一樣性,漸近無偏性和漸近有效性。
2.殘差的方差
52=u'u/(T-k)(1.13)
N是〉的無偏估計量,E(S2)=/。6的估計的方差協(xié)方差矩陣是
0
1
Var(^)=?(X'Xy(1.14)
3.多重確定系數(shù)(多重可決系數(shù))
Y=Xfi+u=Y+u(1.15)
總平方和
SST=a刃”丁-療,(1.16)
其中5是M的樣本平均數(shù),定義為》=(a:YJ/T0回來平方和為
4—/
TL,2
SSR=al=/(yt-y)=y,y-Ty(1.17)
其中y的定義同上。殘差平方和為
SSE=自產(chǎn)=aI*'=GF(1.18)
則有如下關(guān)系存在,
SST=SSR+SSE(1.19)
,SSRyy-Ty2
R2_____二_______)(1.20)
SSTY^-Ty2
明顯有0<R2<kR2』,擬合優(yōu)度越好。
4.調(diào)整的多重確定系數(shù)
當(dāng)說明變量的個數(shù)增加時,通常R?不下降,而是上升。為調(diào)整因自由度減小帶來的損
失,又定義調(diào)整的多重確定系數(shù)Q如下:
SSE/T-k,J-I“SST-SSR.T-//r
R2=i.-S-S--T-/-(:-T-----1)-=1-[(-T-----k-X,-----S-S--T-----;=1--T-----k-(,1-R-7(1.21)
5.OLS估計量的分布
若〃~N(0,。2/),則每個處都聽從正態(tài)分布。于是有
y~N(XB,02!)(1.22)
因6也是〃的線性組合(見公式1.7),依據(jù)(1.11)和(1.12)有
6~N(B,。2(X'X)-1)(1.23)
6.方差分析與〃檢驗
與SST相對應(yīng),自由度T-\也被分解為兩部分,
(T-l)=(4?1)+(八攵)(1.24)
OODSSE
回來均方定義為MS/?:=二■,誤差均方定義為MSE=
k-1T-k
表1.1方差分析表
方差來源平方和自由度均方
回來hlMSR=SSR/(k-\)
SSR=YY-Ty2
誤差SSE=uiiT-kMSE=SSEf(T-k)
總和SST=Y'Y-Ty2T-l
Ho:B1=82=…=():Hi:不全為零
MSR_SSR/(k-1)
(1.25)
MSE~SSE/(T-k)~3'攻
設(shè)檢驗水平為a,則檢驗規(guī)則是,若F<Fa(k-\,T-k)f接受Ho;若F>Fa(k-u-k),拒絕Ho?
尸檢驗示意圖/檢驗示意圖
7./檢驗
Ho:%=0,(/=1,2,…,hl),Hi:分工0
A
t=%I產(chǎn)S/\/s"x,x尸"AT-A)
s傳“
(1.26)
判別規(guī)則:若I//a(T-k)接受Ho;若I/I>T-k)拒絕H0。
8.再的置信區(qū)間
(1)全部力的聯(lián)合置信區(qū)間接受
尸=,(B-6)'(X'X)(B-6)/S2~Fs-k)(1.27)
k
(B-6)'(X%)(B")</4凡gTM它是一個A維橢球。(1.28)
(2)單個3的置信區(qū)間
Bi=Pi-yjvj+jStar2.{T-k).(1.29)
9.預(yù)料
(1)點預(yù)料
c=(Ixr+11AT+l2...XT+jhl)(1.30)
則T+1期被說明變量"X的點預(yù)料式是,
§T+\=CB=BQ+3I-VT4.Ii+…+/A.lXT*|jfc.1(1.31)
(2)E(.vr+i)的置信區(qū)間預(yù)料
首先求點預(yù)料式Cp的抽樣分布
E(yi)=E(C/)
r+(132)
Var(>'T+l)=Var(C/?)=E\(CR-C0)(C8-C。)'、
=E[C(6-£)[C(//)]']=CE[(6/)(~/)']C'
=CVar(6)C'=C『(X'X尸C,=o2C(X'K)/。',(1.33)
因為力聽從多元正態(tài)分布,所以c£也是一個多元正態(tài)分布變量,即
!
_vr+1=cB~N(C尸.(TC(X'X)-0(1.34)
構(gòu)成/分布統(tǒng)計量如下
,=b+廠E%/=Cb-Cb
(T-k)
S《C(X”)」CS《C(X,X『C
(1.35)
置信區(qū)間cp±tai2^r-k)sJc(rx『c(1.36)
(3)單個"+1的置信區(qū)間預(yù)料
H+1值與點預(yù)料值%+/有以下關(guān)系
yr+1=%+/+〃7+1(1.37)
其中〃7■“是隨機(jī)誤差項。因為
E(yr+i)=E(%+]+ig)=CP(1.38)
22
Var()Y+I)=Var(y7+;)+Var(Wr+l)=aC(X'X)'C'+。
=o2(C(X,XyiC,+1)(139)
因為力聽從多元正態(tài)分布,所以yr+i也是一個多元正態(tài)分布變量,即
"+i~N(CB,02c(X'X)/C'+1)
與上相仿,單個.vr+i的置信區(qū)間是
,l
Cp+tal'2(T-k)^C(XX)-C+l(1.40)
計算舉例:(見《計量經(jīng)濟(jì)分析》第19-27頁,熟識矩陣運算)
10.預(yù)料的評價指標(biāo)
留意,以下6個公式中的日表示的是預(yù)料誤差,不是殘差。可以在樣本內(nèi)、外預(yù)料。
(1)預(yù)料誤差。預(yù)料誤差定義為
6二%-3%t=T+\,7+2,...
⑵相對誤差PE(PercentageError)。
PE=匕-丫二t=T+\,T+2,...
yt
(3)誤差均方根nnserror(RootMeanSquaredError)
rmserrors,卷(yt-yt)~
'I't=i
(4)確定誤差平均MAE(MeanAbsoluteError)
]T
-a\yt-y\
1
(5)相對誤差確定值平均M4PE(MeanAbsolutePercentageError)
以上6個式子中,力表示預(yù)料值,乃表示實際值。刀延〃的取值范圍是[0,1]。明顯在預(yù)
料區(qū)間內(nèi),當(dāng)月與y完全相等時,Theil=0:當(dāng)預(yù)料結(jié)果最差時,77?〃=1。公式中的累加
范圍是用1至7表示的,當(dāng)然也可以用于樣本外預(yù)料評吩。
11.建模過程中應(yīng)留意的問題
(1)探討經(jīng)濟(jì)變量之間的關(guān)系要剔除物價變動因素。以上圖為例,按當(dāng)年價格計算,我
國1992年的GDP是1980年的5.9倍,而按固定價格計算,我國1992年的GDP是19B0年
的2.8倍。另外從圖中還可看出,1980-1992期間按名義價格計算的GDP曲線始終是上升的,
而按不變價格(1980年價格)計算的GDP曲線在1989年出現(xiàn)一次下降??梢娞接懡?jīng)濟(jì)變
量應(yīng)當(dāng)剔除物價變動因素3
(2)依照經(jīng)濟(jì)理論以及對詳細(xì)經(jīng)濟(jì)問題的深化分析初步確定說明變量。
例:我國糧食產(chǎn)量二/(耕地面積、農(nóng)機(jī)總動力、施用化肥量、農(nóng)業(yè)人口等)。但依據(jù)
我國目前狀況,“耕地面積”不是“糧食產(chǎn)量”的重要說明變量。糧食產(chǎn)量的提高主要來自
科技含量的提高。
例:關(guān)于某市的食用油消費量,文革前常駐人口確足是重要說明變顯?,F(xiàn)在則不同,消
費水平是重要說明變量,因為食用油供應(yīng)方式已變更。
(3)當(dāng)引用現(xiàn)成數(shù)據(jù)時,要留意數(shù)據(jù)的定義是否與所選定的變量定義相符。
例:“農(nóng)業(yè)人口”要區(qū)分是“從事農(nóng)業(yè)勞動的人口”還是相對于城市人口的“農(nóng)業(yè)人口二
例:2002年起我國將執(zhí)行新的規(guī)定劃分三次產(chǎn)業(yè)。即將農(nóng)、林、牧、副、漁服務(wù)業(yè)從
原第三產(chǎn)業(yè)劃歸第一產(chǎn)業(yè)。
(4)通過散點圖,相關(guān)系數(shù),確定說明變量與被說明變量的詳細(xì)函數(shù)關(guān)系。(線性、非
線性、無關(guān)系)
(5)謹(jǐn)慎對待異樣值。不能把建立模型簡怙化為一個純數(shù)學(xué)過程,目的是找尋經(jīng)濟(jì)規(guī)律。
年INV(投資)IMPORT(進(jìn)口)
19912.56200023.47000
19922.42970032.29000
19936.71240063.99000
199415.3760078.75000
199521.31000149.1300
199627.37000113.8100
199741.71000106.1500
199839.78000112.2000
(6)過原點回來模型與非過原點回來模型相比有如下不同點。以?元線性過原點模型,
>,/=3!X;+W,,為例,①2團(tuán)=0不確定成立。緣由是正規(guī)方程只有一個(不是兩個),
--------------=2E(yt-P\Xt)(-3)=0,
也
即工"即=0,而沒有不樂=0。所以殘差和等于零不確定成立。②可決系數(shù)R2有時會得
負(fù)值!緣由是有時會有SSE>SST。為維持SSE+SSR=SST,迫使SSR<0。
(7)變更變量的測量單位可能會引起回來系數(shù)值的變更,但不會影響,值。即不會影響統(tǒng)
計檢驗結(jié)果。
(8)向來模型給出估計結(jié)果后,首先應(yīng)進(jìn)行尸檢驗。尸檢驗是對模型整體回來顯著性的
檢驗。(檢驗一次,Ho:P1=152=...=3*-i=0;Hi:BJ不全為零。)若尸檢驗結(jié)果能拒絕
原假設(shè),應(yīng)進(jìn)一步作/檢驗(檢驗〃次,Ho:8尸0,。=1,2,…,hl),H,:>wD)。/
檢驗是對單個說明變量的回來顯著性的檢驗。若回來系數(shù)估計值未通過,檢驗,則相應(yīng)說明
變量應(yīng)從模型中剔除。剔除該說明變量后應(yīng)重新回來。按經(jīng)濟(jì)理論選擇的變量剔出時要:慎重:。
(9)在作尸與,檢驗時,不要把自由度和檢驗水平用錯(正確查臨界值表)?;貋硐禂?shù)
的t檢驗是雙端檢驗,但!檢驗表的定義有P(|r|>ia)=a,P(t<ta)=a
(10)對于多元回來模型,當(dāng)說明變量的量綱不相同時,不能在估計的回來系數(shù)之間比
較大小。若要在多元【可來模型中比較說明變量的相對重要性,應(yīng)當(dāng)對1口I來系數(shù)作如下變換
(1.41)
其中$(無)和s()“)分別表示即和y的樣本標(biāo)準(zhǔn)差。4*可用來干脆比較大小。
以二元模型為例,標(biāo)準(zhǔn)化的回來模型表示如下(標(biāo)準(zhǔn)化后不存在截距項),
y,-y八x,,-x,八
1^-4=01*—―,+62*十x”一-x.?...+%*
s(yt)s(xjs(xt2)
兩側(cè)同乘$。力,得
G,L》)=B1*1(如■虧)+B2*S?'1(X〃■工2)+…+〃產(chǎn)$?!?/p>
5(之|)$(巧2)
所以有
p.*2i2il=p,即B*=i=1,2,…h(huán)l
s(勺)s(y1)
既是(1.41)式。
(11)利用回來模型預(yù)料時,說明變量的值最好不要離開樣本范圍太遠(yuǎn)。緣由是①依據(jù)
預(yù)料公式離樣本平均值越遠(yuǎn),預(yù)料誤差越大;②有時,樣本以外變量的關(guān)系不清晰。當(dāng)樣本
外變量的關(guān)系與樣本內(nèi)變量的關(guān)系完全不同時,在樣本外預(yù)料就會發(fā)生錯誤。圖3.10給出
青銅硬度與錫含量的關(guān)系曲線。若以錫含量為0-16%為樣本,求得的關(guān)系近似是線性的。當(dāng)
把預(yù)料點選在錫含量為16%之外時,明顯這種預(yù)料會發(fā)生嚴(yán)峻錯誤。因為錫含最超過16%
之后,青銅的硬度急劇下降,不再遵從錫含量為0-16%時的關(guān)系。
圖3.9v的區(qū)間預(yù)料的變更圖3.10青銅硬度與錫含量的關(guān)系
(12)回來模型的估計結(jié)果應(yīng)與經(jīng)濟(jì)理論或常識相?樣。如邊際消費傾向估計結(jié)果為1.5,
則模型很難被接受。
(13)殘差項應(yīng)非自相關(guān)(用DW檢驗,亦可推斷虛假回來)。否則說明①仍有重要說明
變量被遺漏在模型之外。②選用的模型形式不妥。
(14)通過對變量取對數(shù)消退異方差。
(15)避開多重共線性。
(16)說明變量應(yīng)具有外生性,與誤差項不相關(guān)。
(17)應(yīng)具有高度概括性。若模型的各種檢驗及預(yù)料實力大致相同,應(yīng)選擇說明變量較
少的一個。
(18)模型的結(jié)構(gòu)稔定性要強(qiáng),超樣本特性要好。
(19)世界是變更的,應(yīng)當(dāng)隨時間的推移剛好修改模型。
建模案例1:《全國味精需求量的計量經(jīng)濟(jì)模型》
(見《預(yù)料》1987年第2期)
1?依據(jù)經(jīng)濟(jì)理論選提影響味精需求量變更的因素
依據(jù)經(jīng)濟(jì)理論一種商品的需求最主要取決于四個因素,即①商品價格,②代用品價格,
③消費者收入水平,④消費者偏好。模型為:
商品需求量=/(商品價格,代用品價格,收入水平,消費者偏好)
對于特定商品嘗精,當(dāng)建立模型時要對上述四個因素能否作為重要說明變量逐一鑒別。
商品價格:味精是一種生活常用品,當(dāng)時又是一種價格較高的調(diào)味品。初步推斷價格會
對需求量產(chǎn)生影響。所以確定價格作為一個重要說明變量。
代用品價格:味精是?種獨特的調(diào)味品,目前尚沒有替代商品。所以不考慮代用品價格
這一因素。
消費者收入:明顯消費者收入應(yīng)當(dāng)是一個較重要的說明變量。
偏好:由于因偏好不食味精或大最食用味精的情形很少見,所以每人用最只會在小范圍
內(nèi)波動,所以不把偏好作為重要說明變量,而歸并入隨機(jī)誤差項。
分析結(jié)果,針對味精需求量只考慮兩個重要說明變量,商品價格和消費者收入水平。
味精需求量=/(商品價格,收入水平)
2.選擇恰當(dāng)?shù)淖兞浚奂纫紤]代表性,也要考慮可能性)
用銷售量代替需求量5因需求量不易度量,味精是自由銷售商品,不存在囤積現(xiàn)象,所
以銷售量口J較好地代表需求量。味精商品價格即銷售價格。
用人均消費水平代替收入水平。因為①消費水平與味精銷售量關(guān)系更親密。②消費水平
數(shù)據(jù)在統(tǒng)計年鑒上便于查找(收入水平的資料不全)。
味精銷售量二八銷售價格,人均消費水平)
用平均價格作為銷售價格的代表變量。不同地區(qū)和不同品牌的味精價格是不一樣的,應(yīng)
取平均價格(加權(quán)平均最好)。
取不變價格的人均消費水平:消費水平都是用當(dāng)年價格計算的,應(yīng)用物價指數(shù)進(jìn)行修正。
味精銷售量=/(平均銷售價格,不變價格的消費水平)
3.收集樣本數(shù)據(jù)(抽樣調(diào)查,引用數(shù)據(jù))
從中國統(tǒng)計年鑒和有關(guān)部門收集樣本數(shù)據(jù)(1972-1982,7=ll)o定義銷售量為M(噸),
平均銷售價格為Er(元/公斤),不變價格的消費水平為x2r(元工相關(guān)系數(shù)表如下:
平均銷售價格(幻,)不變價格的消費水平(x2,)
味精銷售量g)-0.36710.9771
注:臨界值n),o5(9)=0.60o
6000060000
50000-50000-
4000040000
3000030000-
20000-20000-
10000-10000-
11.0
4,確定模型形式并估計參數(shù)
y,=-144680.9+6313.4x1;+690.4x2,(1)
(-3.92)(2.17)(15.32)R1=0.97,DW=1.8,Zo.os(8)=2.3
回來系數(shù)6313.4無顯著性Gl與x2,應(yīng)當(dāng)是負(fù)相關(guān),回來系數(shù)估計值卻為正,可見該估計
值不行信)。剔除不顯著變量xl”再次回來,
y,=-65373.6+642.4x2,(2)
(-10.32)(13.8)R2=0.95,DW=1.5,/o,O5⑼=2.26
問題:A=6313.4,為什么檢驗結(jié)果是伙=0?量綱的變更對回來結(jié)果會造成影響嗎?
建模案例2:《用回來方法估計純耕地面積》
(見《數(shù)理統(tǒng)計與管理》1986年第6期)
目前對土地的調(diào)查大多采納航空攝影,從照片上把各類資源圖斑轉(zhuǎn)繪到1:10000的地形
圖上,然后再從地形圖上測繪圖斑面積。
在處理如何獲得實際耕地面積時,關(guān)鍵技術(shù)難題是如何將耕地圖斑中包含的田展、土坎、
空隙地、寬度小于2米的路、溝、渠等面積從圖斑中分別出來。因為它們在航空圖片上的辨
別率很低,無法干脆勾繪,測算。
設(shè)一個毛耕地圖斑面積用S表示,其中不能耕種的面枳(扣除面積)用/S表示,則扣
除系數(shù),
yi=AS/S=(扣除面積)/(毛耕地圖斑面積)。
對于每一個圖斑,知道精確的扣除系數(shù).就很簡潔依據(jù)毛耕地圖斑面積S計算出純耕
地面積?,F(xiàn)在用回來分析方法,找尋影響扣除系數(shù)變更的主要因素,從而建立關(guān)于“扣除系
數(shù)”的回來模型。
該論文探討的是湖南地區(qū)的耕地面積調(diào)查。湖南省屬丘陵山區(qū),地形困難,各種地類犬
牙交織,影響扣除系數(shù)的因素許多。如田及寬度、地塊大小、地塊坡度、空隙地、地貌類型
等。通過實際調(diào)查和分析,初步確定三個主要因素,即
“坡度”、“地塊面積”和“田境寬度”
論文作者在五個縣共調(diào)杳了867個樣本點,其中水田樣本522個,旱田樣本345個。詳
細(xì)做法是首先把867個樣本數(shù)據(jù)按“坡度”分成25個等級,然后再把屬于同一個等級的樣
本數(shù)據(jù)用加權(quán)平均的方法求出另兩個因素的觀測值,“平均地塊面枳”和“平均田填寬度”。
整理樣本數(shù)據(jù)如下:
,(序號)y,?(扣除系數(shù))X”(坡度)4(平均地塊面積)加(平均田及寬度)
14.235601.93000.6318
24.883811.49180.7312
37.830021.12530.9731
2539.4151241.06004.0721
擬建摸型為,
yi=+X\j+plX2i+&X3i+Ui
利用樣本得估計的回來方程
y,=1.672+1.145x1/+0.608必+2.081處
(7.3)(0.4)(1.85)F=221.62
(F.o5(3.2i)=3.07,Foi(3,2i)=4.87,Z.o5(2i)=2.08.<oi(2i)=2.84)
統(tǒng)計檢驗結(jié)果表明M?,刈為非重要說明變量。剔除之,用V對刈再次回來得,
y,=3.34+1.35xu
實際的驗證結(jié)果表明,用只考慮“地塊坡度”計算出來的扣除系數(shù)估計“純耕地面積”
完全能滿意精度要求,從而為削減野外作業(yè)強(qiáng)度(不必再測量“地塊面積”和“田域?qū)挾取保?
快速完成測算,供應(yīng)了科學(xué)依據(jù)。+四必+儂〃+…+4Ng確定的〃維空間平面。
當(dāng)給定一個樣本(為刈,即2,…,X”/),t=1,2,…,7時,上述模型表示為
-yi=R+0ixii+的ci2+...+人-g&-1+〃1,經(jīng)濟(jì)意義:叼是力的重要說明變量。
yi=優(yōu)+四Ml+A'22+...+"1X2A-I+"2,代數(shù)意義:與即j存在線性關(guān)系。
|.......幾何意義:%表示一個多維平面。
Iyr=+P\xT?+pixT2+...+Pk-\xrk-\+Mr,(1.2)
此時乃與■己知,廳與的未知。
/\T孫…X|j…匹卜[、/、
y1fA]
>'21A-21…x2J…x2IB\“2
=(13)
??????????????????+
kA-i;
k-Vr>xxX;ll
(Txl)JTl…7j…Tk-\(Tx幻(hl)\T)(Txl)
丫二牙/+〃,(1.4)
為保證得到最優(yōu)估計量,回來模型(1.4)應(yīng)滿意如下假定條件。
假定⑴隨機(jī)誤差項“,是非自相關(guān)的,每一誤差項都滿意均值為零,方差/相同且
為有限值,即
3(1。0、
E(〃)=0=:LVar(w)=E(w?')=<J2I=/°,°
[(JI。。D
假定⑵說明變量與誤差項相互獨立.,即
E(X*1/)=0.
假定⑶說明變量之間線性無關(guān)。
rk(X'X)=rk(X)=k.
其中rk()表示矩陣的秩。
假定⑷說明變量是非隨機(jī)的,且當(dāng)7-8時
T'XX-Q.
其中。是一個有限值的非退化矩陣。
最小二乘(OLS)法的原理是求殘差(誤差項的估計值)平方和最小。代數(shù)上是求極值
問題。
mins=(y_x/)'(y_x/)=y'y-6'x'y-Y'xp+p'x'xp
=Y,Y-2fi'X'Y+p'X'Xp.(1.5)
因為rxb是一個標(biāo)量,所以有rx/=B'XY(1.5I的一階條件為:
—=-2XT+2X'X夕=0(1.6)
化簡得
XY=XxB
因為(X'X)是一個非退化矩陣(見假定⑶),所以有
B=(X'XVXY(1.7)
因為(1.5)的二階條件
-4X=2X'X>0(1.8)
斗即
得到滿意,所以(1.7)是(1.5)的解°
因為牙的元素是非隨機(jī)的,(牙,*)/*是個常數(shù)矩陣,則/是V的線性組合,為線性
估計量。
求出6,估計的回來模型寫為
Y=Xp+u(1.9)
其中£=(瓦A...瓦T),是6的估計值列向量,G=(y-x/)稱為殘差列向量。因為
ii=Y-Xfi=Y-X(X'X)AXY=II-X(X'X)-1X'\Y(1.10)
所以o也是丫的線性組合,6的期望和方差是
E(6)=E[(XX'1X'Y]=E[(X'XylX\xp+?)]
二夕+(XX)“HE(〃)="(1.11)
Var(3)=E[(^-p)(p-〃]=E[(X'X尸X'uu'X{X'X)1]
=E[(X,XyxX'a2lX(X'X)-']=a2(X,Xyl.(1.12)
高斯一馬爾可夫定理:若前述假定條件成立,OLS估計量是最佳線性無偏估計量,6具
有無偏性。6具有最小方差特性。6具有一樣性,漸近無偏性和漸近有效性。
2.殘差的方差
52=u'u/(T-k)(1.13)
N是。2的無偏估計量,6的估計的方差協(xié)方差矩陣是
E(52)=O.2O
4(6)=Q(X'X)"(1.14)
3.多重確定系數(shù)(多重可決系數(shù))
y=x/+w=y+u(1.15)
總平方和
SST=TJX-y)2=Y'Y-Ty\(1.16)
其中》是M的樣本平均數(shù),定義為(2:[乂)/7?;貋砥椒胶蜑?/p>
SSR=一月2=Y'Y-Ty2(1.17)
其中》的定義同上。殘差平方和為
SSE=2匚(--力)2==G'G(1.18)
則有如下關(guān)系存在,
SST=SSR+SSE(1.19)
R2=SSRY'Y-Ty2
(1.20)
"'SST=Y7-ly2
明顯有0?尺2VLR2.I,擬合優(yōu)度越好。
4.調(diào)整的多重確定系數(shù)
當(dāng)說明變量的個數(shù)增加時,通常R?不下降,而是上升。為調(diào)整因自由度減小帶來的損
失,又定義調(diào)整的多重確定系數(shù)后如下:
T2
(1.21)
SST/(T-1)T-kSSTT-k
5.OLS估計量的分布
若〃?N(0,。2/),則每個出都聽從正態(tài)分布。于是有
Y~N〈XB、o]、(1.22)
因6也是〃的線性組合(見公式1.7),依據(jù)(1.11)和(1.12)有
B~N(仇W(X、XY')(1.23)
6.方差分析與尸檢驗
與ssr相對應(yīng),自由度T-\也被分解為兩部分,
(T1)=伏一1)+(71女)(1.24)
回來均方定義為MSN=—,誤差均方定義為MSE二里
k-1T-k
表1.1方差分析表
方差來源平方和自由度均方
回來A.k-1MSR=SSR/(k-1)
SSR=Y'Y-Ty2
誤差SSE=it'uT-kMSE=SSE/(T-k)
總和SST=Y'Y-Ty27-1
H():仇=仇=…=仇八=。;Hi:力不全為零
MSR_SSR/(k-l)?
(1.25)
MSESSE/(T-k)
。
設(shè)檢驗水平為a,則檢驗規(guī)則是,若F<Fa(k-\j-kp接受Ho:若F>Fag.T拒絕H°。
Fa(k-\.T-k)/<4T-k)0/?T-k>
“檢驗示意圖/檢驗示意圖
7.1檢驗
Ho:耳=0,(/=1,2,…,hl),Hi:H±0
t=/河6)川=瓦/J$2(X、)T=?.
tTk}(1.26)
判別規(guī)則:若I/IKta(T-k)接受Ho:若I/I>Za(T-k)拒絕Ho。
8.用的置信區(qū)間
(1)全部力的聯(lián)合置信區(qū)間接受
1A
尸二;(夕-夕)'(X'X)(夕-A)//~Fau(1.27)
k
(66),(XN)(夕-6)?$2女入伙,號),它是一個k維橢球。(1.28)
(2)單個月的置信區(qū)間
A=瓦土"j+1Sto12gl.(1.29)
9.預(yù)料
(1)點預(yù)料
C=(1xy+lIAT+l2...XT+1A--I)(1.30)
則T+1期被說明變量"*的點預(yù)料式是,
即+[=C'/=6o+6IX丁+11+…+BA-IXr+|k-\(1.31)
(2)E(K+I)的置信區(qū)間預(yù)料
首先求點預(yù)料式。方的抽樣分布
E(務(wù)+i)=E(C/)=C£(132)
Var(yr+1)=Var(C/?)=E[(Cfl-C/3)(Cfl-C/3)']
二E[C(6-m[C(64)]']=CE[(6/)(//)"C'
=CVar(/?)C'=Co2(X'X)-,C,=o2C(X,X)-,C\(1.33)
因為力聽從多元正態(tài)分布,所以也是一個多元正態(tài)分布變量,即
即+1=CB?N0(rC(XX)'C
(1.34)
構(gòu)成/分布統(tǒng)計量如下
L_cp-cp
I--I=------1=?t(T-k)(1.35)
s,C(X,X)-'CWc(XX)Tc
置信區(qū)間cp±is(I.T*、sJC(HX『C(1.36)
(3)單個的置信區(qū)間預(yù)料
yr+i值與點預(yù)料值孫川有以下關(guān)系
)'T+\=5'r+i+〃7+i(1.37)
其中〃7+1是隨機(jī)誤差項。因為
E(yy+1)=E(方+]+Wr+I)=Cfi(1.38)
2A2
Var(yr+i)=Var(yr+1)+Var(z/r+i)=aC(X'X)C'+a
=(y2(C(X'Xy}C'+1)(1.39)
因為方聽從多元正態(tài)分布,所以)7+1也是一個多元正態(tài)分布變量,即
yni~N(CR<rC(XrX)*'C'+1)
與上相仿,單個yr+i的置信區(qū)間是
CP±taJ2(T.k)SylC(X'X)-lC'+\(1.40)
計算舉例:(見《計量經(jīng)濟(jì)分析》第19-27頁,熟識矩陣運算)
10.預(yù)料的評價指標(biāo)
留意,以下6個公式中的6表示的是預(yù)料誤差,不是殘差??梢栽跇颖緝?nèi)、外預(yù)料。
(3)預(yù)料誤差。預(yù)料誤差定義為
et=yt-yt,t=T+\,T+2,...
(4)相對誤差PE(PercentageError)o
PE=>",t=T+\,T+2,...
X
(3)誤差均方根nnserror(RooiMeanSquaredError)
miserror=
(4)確定誤差平均MAE(MeanAbsoluteError)
MAE回
=J11z=1fl
(5)相對誤差確定值平均MAPE(MeanAbsolutePercentageError)
(6)Theil系數(shù)(TheilCoefficent)
;=1,2,T
以上6個式子中,力表示預(yù)料值,州表示實際值。77%〃的取值范圍是[0,1]。明顯在預(yù)
料區(qū)間內(nèi),當(dāng)月與V完全相等時,Theil=0;當(dāng)預(yù)料結(jié)果最差時,Theil=lo公式中的累加
范圍是用1至7表示的,當(dāng)然也可以用于樣本外預(yù)料評為。
11.建模過程中應(yīng)留意的問題
(1)探討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境健康大數(shù)據(jù)的風(fēng)險評估
- 電子集團(tuán)市場專員崗位知識考試題集含答案
- 企業(yè)形象策劃公司項目經(jīng)理的職責(zé)與面試題
- 特殊項目運動員的傷病防控方案
- 節(jié)能洗衣機(jī)項目可行性研究報告(總投資3000萬元)(14畝)
- 深度解析(2026)《GBT 18905.6-2002軟件工程 產(chǎn)品評價 第6部分評價模塊的文檔編制》
- 風(fēng)險控制專員考核標(biāo)準(zhǔn)及辦法
- 市場營銷總監(jiān)面試題及品牌營銷策略含答案
- 深度解析(2026)《GBT 18572-2001小艇 舷外機(jī)的靜推力測定》(2026年)深度解析
- 食品企業(yè)生產(chǎn)經(jīng)理面試寶典與答案解析
- 村會計筆試試題及答案
- 2026年江西省鐵路航空投資集團(tuán)校園招聘(24人)筆試考試參考題庫及答案解析
- 2025年徐州市教育局直屬學(xué)校招聘真題
- 消防設(shè)施共用責(zé)任劃分協(xié)議書范本
- 杜國楹小罐茶的創(chuàng)業(yè)講稿
- 2025-2026學(xué)年統(tǒng)編版九年級歷史上冊(全冊)知識點梳理歸納
- 滬教版(新版)一年級下學(xué)期數(shù)學(xué)第4單元100以內(nèi)的加減法單元試卷(附答案)
- 放射科CT檢查注意事項
- 物流運輸服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 產(chǎn)業(yè)園招商培訓(xùn)
- 2018版公路工程質(zhì)量檢驗評定標(biāo)準(zhǔn)分項工程質(zhì)量檢驗評定表路基土石方工程
評論
0/150
提交評論