版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
centrefor
RegulatorystrategyAsiapacific
SafeguardingCybersecurityinAI:
BuildingResilienceinaNewRiskLandscape
December2025
Australia
China(Mainland)
NavigatingtheReport
OverviewoftheRegulatoryLandscape
Recommendations
Clickicontonavigatetotherelevantsection
Introduction
AI
Cybersecurity
DeepDive
Philippines
Thailand
Indonesia
Jurisdictional
Singapore
Vietnam
Japan
Malaysia
SouthKorea
HongKongSAR
India
NewZealand
Taiwan(China)
Contacts
Endnotes
Introduction
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
However,despitethepotentialrisks,AIalsoprovidesopportunitiestostrengthencybersecurity.AI-enabledtoolscanhelporganisationsdetectissues,improvethesecurityofsoftwareandsystems,andrespondtoincidentsmorequicklyandconsistently.Firmsthatcombinethesecapabilitieswithstronggovernanceandproportionatecontrolswillbebetterpositionedtomanagetheevolvingcyberthreatlandscape.
CybersecurityisnowfirmlyaBoardlevelresponsibility.TheadditionalrisksintroducedbyAImakestrongoversight,clearlinesofaccountability,andBoardfluencyinAItechnologyessential.Thesecapabilitiesareneedednotonlytoprotectcriticaloperationsandmeetregulatoryobligations,butalsotomaintaincustomerandstakeholdertrust.
ThispaperexamineshowAIisimpactingcybersecurityrisk,howsupervisorsinAParerespondingandwhatorganisationscandotobuildstrongerandmoreresilientdefences.Itoutlineskeyattackvectors,emergingregulatoryexpectations,andpracticalstepsforBoardsandseniorexecutivestobolstertheirfirm’scyberresilience.
WhilstthispaperfocusesonAIsecurityconsiderations,itisimportantforfirmstotakeaholisticviewandaddressallAI-relatedriskswhendevelopingtheirtechnologystrategyandAIsystems.
Artificialintelligence(AI)isreshapingthecybersecuritylandscapeacrossAsiaPacific(AP).
Australia
China(Mainland)
HongKongSAR
EvenbeforetheriseofadvancedAI,theincreasingdigitisationofbusinessoperationshadalreadymadecyber-attacksmorefrequent,scalableandeffective.AIisnowamplifyingthistrendbyenablingmaliciousactorstoworkmorequicklyandproducemoreconvincingandadaptiveattacks.Forexample,AIcanhelpgeneratepersuasivephishingmessagesanddeepfakes,analysesystemstoidentifyweaknesses,andadjustattackmethodsinreal-time.Thislowersthebarrierforattackersandincreasesboththespeedandpotentialimpactofacyberincident.
India
Indonesia
Japan
Malaysia
AsorganisationsadoptAIacrosscoreprocesses,theattacksurfaceisalsoexpanding.AIintroducesnewsystemsanddataflowsintotechnologyarchitecture,includingmodeltrainingenvironments,automateddecisionworkflowsandlarge-scaledatapipelines.Thesecomponentscanpotentiallycreateadditionalpointswherevulnerabilitiesmayarise.Further,theAIsystemsarealsosubjecttoattack.Adversariesmaytrytocorruptthedatausedtotrainmodels,influenceordistortmodeloutputs,orexploitweaknessesinhowthesystemsinterpretandrespondtouserinputs.
NewZealand
Philippines
Singapore
Thesethreatscreateclearbusinessrisks.AI-relatedcyberincidentscancausefinanciallosses,compromiseintellectualproperty,distortcriticaldecisionoutputs,exposesensitivecustomerdata,anderodeorganisationalreputationandstakeholdertrust.Therefore,asAIadoptiongrows,itiscriticalthatrisksmustbeassessedandmanagedaspartofawidercyberdefencestrategy.
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
03
AISecurityvs.AISafety
Forthepurposesofthisreport,wedefineAIsecurityastheprotectionsthatkeepAIsystemsresilientagainstattacksandmisuse.Thisincludesdefendingagainstadversarialinputs,tampereddata,stolenmodels,andattemptstomanipulateorextractmodeloutputs.
WedistinguishthisfromAIsafety,whichconcernshowanAIsystembehavessuchasitsaccuracy,reliability,fairness,andalignmentwithintendedgoals.
Inpractice,thesetwodomainsoftenoverlap.Weaksafety,suchasamodelthatisbrittle,poorlycalibrated,orpronetohallucinationcancreateopeningsthatattackerscanexploit.Conversely,asecurityfailurelikecompromisedtrainingdataormanipulatedcontentcandegradesafetybychangingasystem’sbehavioranderodingtrustinitsoutputs.
ThispaperfocusesonthecybersecurityrisksassociatedwithAIsystemswhilerecognisingtheseriskscanaffectbroadersafetyoutcomesandvice-versa.
NewZealand
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
04
Australia
India
Indonesia
Malaysia
Overview
Recommendations
JurisdictionalDeepDive
Japan
China(Mainland)HongKongSAR
Introduction
AICybersecurity
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
AustraliaChina(Mainland)HongKongSARIndia
IndonesiaJapanMalaysiaNewZealand
AICybersecurity
AICybersecurityRisks
AsorganisationsbegintoadoptandscaleAI,maliciousactorsareevolvingtotargetthesesystems.Sometechniquessuchaspromptinjections,jailbreaksandmodelextractionarerelativelynewandarisefromthewayAImodelsprocessdataandinstructions.Others,includingsupplychaincompromiseortheexploitationofvulnerablecomponents,buildonlongstandingcyber-attackmethods.Nevertheless,theimpactsareamplifiedbyAI’srelianceonexternalmodels,opensourcetoolsandcomplexdatapipelines.Theresultisabroaderandmoredynamicattacksurfacethatcanimpacttheintegrity,confidentialityandreliabilityofAIsystemsandtheprocessestheyunderpin.UnderstandingtheserisksisanimportantfirststepindevelopingthesecuritycontrolsandmonitoringmechanismsneededtokeepAIsystemssafe.
ThetablebelowsummarisessomeofthekeysecurityrisksimpactingAIsystems.
AttacksonModelBehaviour
AttackVector
WhatItIs
HowAttackersExploitIt
WhyItMatters
Promptinjections
MaliciousorcarefullycraftedinstructionsinsertedintopromptsorcontextualdatathatanAImodelreliesontogenerateoutputs.Theseinstructionsareoftenhiddenwithinuserinputs,documents,websitesordatasets
Attackerstrickthemodelintofollowingunintendedinstructionsbyembeddingcommandsinusertext,metadataorexternalcontentpulledintothe
modelIscontext.Thiscanoverrideintendedlogicandcausethemodeltobehaveunpredictably
Promptinjectionscancausethemodeltodisclosesensitiveinformation,performunintendedactions,generateharmfulorunauthorisedoutputsor
underminedownstreamautomatedprocessesthatrelyonmodel-generatedcontent
Jailbreaks
TechniquesthatdeliberatelybypassguardrailsandrestrictionsbuiltintoAIsystems,allowingthemtooutputcontentthatwouldnormallybeblocked
Attackerschainprompts,useroleplay,disguiserequestsorcreatemulti-stepinstructionsthatgraduallyweakenthemodel’sguardrailsuntilitproducesrestrictedorinappropriatecontent
Jailbreaksexpose?rmstothegenerationof
harmful,misleadingornon-compliantoutputs,
whichcancreateregulatory,ethicaland
reputationalrisks.Theycanalsoenableattackerstomapweaknessesinamodel’scontrolframework
Adversarial
promptsorexamples
Inputsthathavebeensubtlyandintentionallyalteredinawaythatmisleadsthemodel,
eventhoughthechangesmaybeimperceptibletohumans
Attackersadjustwords,phrasing,imagesordatapatternssothemodelinterpretsthemincorrectly.Thesemanipulationsexploithowmodelsprocessandweightdi?erentfeatures
Thiscancausemodelstomisclassifyormisinterpretinformation,resultinginunreliabledecisions,
manipulationofautomatedwork?owsorincorrectoutputsinhigh-stakesenvironmentssuchasfrauddetectionorcontentmoderation
PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes
05
Introduction●
Overview
Recommendations●
JurisdictionalDeepDive
Australia●
China(Mainland)●HongKongSAR●
India●
Indonesia●
Japan
Malaysia
AICybersecurity
AttacksonDataand
TrainingPipelines
WhatItIs
AttackVectorHowAttackersExploitItWhyItMatters
●Modelinversion
Poisoningweakensmode|performance,embedsbackdoors,createssystematicinaccuraciesanderodestrustinthesystem.Poisoningattackscanbedi?culttodetect,anddamagecanpersist
acrossiterationsofthemode|
Thiscanexposesensitiveorregulateddata,
vio|ateprivacyob|igationsanda||owattackerstobuilddetailedpro?lesofindividualsordatasets.Regulatorsincreasinglyviewthisasasigni?cantcomplianceandcon?dentialityrisk
Thisunderminesintellectualproperty,reducescompetitiveadvantageandenab|esma|iciousactorstodep|oythesto|enmode|forharmfu|purposes,inc|uding|arge-sca|eattacksor
disinformation
Thedeliberateintroductionofcorrupted,biasedormisleadingdataintotrainingor?ne-tuning
pipe|ines.Poisoneddatamay|ook|egitimatebutisengineeredtodistortmode|behaviour
Amethodofreconstructingsensitiveinformationaboutthetrainingdatabyana|ysingpatternsinthemode|,soutputs.Overtime,attackerscan
inferdetai|sabouttheorigina|dataset
Aprocesswhereanattackerrep|icatesamode|,sfunctiona|ity,|ogicorparametersbyqueryingitrepeatedly,e?ectivelycloningthemodelwithoutdirectaccesstoitscodeortrainingdata
Attackersissuerepeated,carefu||ystructuredqueriesandana|ysereturnedpatternstoinferpersonalattributes,con?dentialinformationorproprietarytrainingdata
Attackerssystematica||yprobethemode|,sinputsandoutputs,oftenusingautomatedtoo|s,unti|theycanreproduceitsdecisionboundariesor
Attackersinsertmanipu|atedsamp|esintodata
sourcesthemode|re|ieson,suchasopen
datasets,web-scrapedmateria|orinterna|updatepipe|ines.lnsomecases,attackersaddItrigger,
patternsthatcausethemode|tobehavedi?erentlyonlyinspeci?cscenarios
Modelextractionortheft
generateanequiva|entmode|
Datapoisoning
NewZealand
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
06
Introduction
AICybersecurity
Overview
ChainandInfrastructure
Supply
Attackson
WhatItIs
Recommendations
JurisdictionalDeepDive
AttackVectorHowAttackersExploitItWhyItMatters
Australia
China(Mainland)
HongKongSAR
India
Indonesia
Japan
Malaysia
NewZealand
Asinglecompromisedcomponentcana?ecteverysystemthatusesit,creatingwidespreadand
hard-to-tracevulnerabilities.Manyorganisationsrelyheavilyonsharedcodeandmodels,thereforeanattackononecomponentcanescalateintoabroadersystemicissueacrosssectorsorregions
Thiscanresultincorruptedmodels,unauthorisedmodelupdates,silenttamperingordisruptionofproductionsystems.Becausepipelinesautomatedeployment,asinglecompromisecanspread
widelyandrapidly
Evenifanorganisation’sownsystemsaresecure,weaknessesinanexternalpartnercancreateapathwayforattackers.Thiscanresultindata
exposure,incorrectmodeloutputsordisruptiontobusinessprocessesthatdependonthose
externalservices
Attackerscompromisepopularopen-source
packagesorpre-trainedmodelssothatany
organisationthatinstallsthemunknowinglyimportstheattacker’scodeormanipulatedmodelweights.Thisallowstheattackertospreadmalwareor
updatedorstored,suchasversion-controlsystemsordeploymentscripts,andinsertchangeswithoutdetection.Thiscanallowthemtomodifyhowa
servicesthattheAIreliesonfordata,processingorfunctionality.TheseareoftenexternaltoolsthatsupplyinputsintotheAIsystem
Compromised
AIdevelopmentpipeline
Third-partyexploitation
Weaknessesorhiddenrisksinopen-source
software,sharedlibrariesorpre-builtAImodelsthatanorganisationdownloadsorintegratesintoitssystems.Thesecomponentsmaycontain
Attacksonthetoolsandsystemsusedtobuild,testanddeployAImodels.Thisincludescoderepositories,modelstoragelocationsand
modelbehaves,disablekeysecuritychecksoraddhiddenfunctions
Insomecases,theyinterceptinformationorfeedincorrectdataintothesystemtoalteroutputs
interfaceswiththird-partyservicesormanipulatethedatabeingsentthroughtheseconnections.
coding?awsormayhavebeentamperedwithbeforedistribution
in?uenceAIbehaviouracrossmanyorganisationsatonce
Compromised
componentsorexternalmodels
Attackerstargettheplaceswheremodelsare
Attackerstakeadvantageofpoorlyprotected
Weaknessesinothercompanies’systemsor
automateddeploymenttools
Philippines
TheseattackvectorsillustratetheAIcyberthreatenvironment,andunderscoretheimportanceofrobustsecuritycontrolsthroughouttheAImodellifecycle.
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
07
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
SupplyChainandThird-PartyRisks
Ashighlightedabove,third-partyrelationshipsandextendedsupplychainsareamajorsourceofcyberandAI-relatedvulnerability,particularlyforfirmsincomplexvendorecosystems.ManyincidentsnowstemfromvendorsandtheAIcapabilitiesembeddedinthesoftwareandservicestheyprovide.Asfirmsconnectmoretoolsanddatapipelines,theycanalsobesusceptibletoweaknessesacrossthisextendedecosystem.Inpractice,acompany’sattacksurfacethereforeexpandstoincludehowitsvendorsdesign,deploy,andupdateAI.
Companiesthatutilisethird-partyinfrastructureshouldbeawarethatvendorpracticesvarysignificantly.SomeprovidershavematuregovernanceandmonitoringprocessesfortheirAImodels;othersarestilldevelopingbasicpoliciesandcontrols.Visibilityintohowvendorsusedata,trainandupdatemodels,andrespondtoissuesisthereforeessentialforunderstandingresidualrisk.
ContractsandoperatingtermsneedtoreflecthowAIfeatureswillevolve,howchangeswillbeannounced,andhowincidentswillbereported.Ongoingdialoguewithkeyvendorsespeciallyaroundnewfeatures,modelchanges,andsystemupdatesiscrucialtoensuresystemsremainsecureandsensitivedataisprotected.
AustraliaChina(Mainland)HongKongSARIndia
Indonesia
Japan
Malaysia
NewZealand
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
08
Introduction
AICybersecurity
Overview
AISecurityTrade-offs
ImplementingcybersecuritymeasuresforAIsystemsrequiresacarefulbalancebetweentheperformanceandsecurityofAIsystems.OrganisationsmustprotectAIassetsagainstincreasinglysophisticatedcyberthreats,whilerecognisingthatgreatersecurityconstraintscandirectlyreducetheaccuracy,adaptability,andoverallutilityofAImodels.AsAIbecomesembeddedincriticalbusinessoperationsanddecision-making,theneedforstrongcybersecuritycontrolisintensifying.Inordertosafeguardagainstkeyriskssuchasdatapoisoning,modeltheftandunauthorisedaccess,firmstypicallydeployarangeofcontrols.Thesesecuritymeasuresincludeencryption,accessmanagement,continuousmonitoringandrigorousauditingofmodelsandtrainingdata.
Akeyconsiderationisthedistinctionbetweenproductivitytools(e.g.,enterprisechatbots,researchtools)andAImodelsthatdrivebusinessdecisions(e.g.,decision-supportalgorithms,model-basedriskengines).Productivitytoolstypicallyoperateonlower-riskdataandcanthereforebedeployedwithlightersecuritycontrolswithoutsignificantlyincreasingexposure.Incontrast,decision-criticalandcustomerfacingAImodelsusuallyrequiremorestringentprotectionsduetothesensitivityoftheunderlyingdataandthepotentialimpactofmodelcompromise.
Applyingauniform,high-securitypostureacrossallAItoolscanunnecessarilydegradeperformanceandreducebusinessvalue,particularlyforlow-risk,high-volumeproductivityapplicationswhereusabilityandspeedareessential.Thechallenge,therefore,liesincalibratingsecurityframeworkstotheriskprofileanduniquecharacteristicsofeachAIusecase.Doingsoallowsfirmstoprotectcriticalassetswithoutconstrainingmodelperformanceorimpedingbusinessproductivity.
Recommendations●
JurisdictionalDeepDive
Australia
China(Mainland)
HongKongSAR
India
Indonesia
Japan
Malaysia
NewZealand
However,manyoftheseprotectionscomewithperformancetrade-offsandcanberesourceintensive.Restrictiveaccesstodata,forexample,canmateriallylimitanAIsystem’sabilitytolearnfromdiverseandrepresentativedatasets,reducingtherobustnessandaccuracyofitsoutputs.Likewise,frequentauthenticationchecksorhighlysegmentedenvironmentscanintroducelatency,disruptreal-timeprocessing,andfrustrateend-userswhoexpectseamlessinteractions.Overlyconservativepoliciescanalsostifleinnovationbypreventingteamsfromexperimentingwithnewusecasesoriteratingmodelsatpace.
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
09
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
AustraliaChina(Mainland)HongKongSARIndia
IndonesiaJapanMalaysiaNewZealand
AI-enabledCybersecurityCapabilities
Ascyberthreatsbecomemorefrequentandcomplex,organisationsareincreasinglyturningtoAItostrengthentheirdefences.Whenusedappropriately,AIcanautomateroutinetasks,detectsuspiciousactivityearlier,andsupportfastermoreaccurateincidentresponse.Thesecapabilitiesenhanceboththeefficiencyandeffectivenessofexistingcybersecuritycontrolswhilehelpingfirmsscaletheirdefencesacrossacomplexdigitalenvironment.
ThreatDetectionandResponse
AIanalysesnetwork,endpoint,anduseractivitytoidentifyanomaliesandsuspiciouspatternsthatmayindicateanemergingthreat.Itprioritisesalertsandproposeslikelycauses,enablingfasterandmoretargetedresponses
SecurePipelineand
DeploymentAutomation
AIpredictsbuildissuesandidenti?escon?gurationweaknessesbeforedeployment.Thishelpsensurethatonlysecurelycon?guredcodeprogressesthroughthepipeline,reducingtheriskofintroducingvulnerabilities
IncidentResponseandMonitoring
AIcorrelatesandsummariseslargevolumesoflogsandtelemetrytoidentifyrootcausesmorequickly.Itautomatespartsoftriageandsupportsmoreconsistentremediationacrossteams
AIisbecominganincreasinglyimportantenablerofmoderncyber-defence.Whilethesetoolsdonotreplaceestablishedcontrolsorhumanjudgement,theysupportmorescalableandefficientsecurityoperations.AsfirmsadoptAI-enabledcapabilities,successwilldependonembeddingthemwithinexistinggovernance,risk,andassuranceframeworkstoensuretheyenhanceratherthancomplicateafirm’scyberdefencestrategy.
AIEnabledSolution
HowdoesthisStrengthensCybersecurity
AIreviewscodeforunsafepatternsandknownvulnerabilitiesasitiswritten,reducingthelikelihoodofsecuritydefectsenteringproductionandloweringremediatione?ort
SecureCodeDevelopment
Policy,Control,and
ComplianceAssurance
AIcontinuouslycheckssystemsagainstinternalsecuritypoliciesandregulatorybaselines,?aggingdeviationsinrealtime.Thisreducestheriskofmiscon?gurations,weakcontrols,andaudit?ndings
SoftwareSupply-ChainSecurity
AIscansthird-partycomponentsandopen-sourcelibrariestodetectvulnerabilities,tampering,orunexpectedchanges.Ithelps?rmsmanagedependencyrisksacrossincreasinglycomplexsoftwareecosystems
SecurityTestingand
VulnerabilityManagement
AIidenti?essecurity-relevantcodeweaknesses,prioritisesvulnerabilityremediationbasedonrisk,andrecommendswhereadditionaltestingisneeded.Thisenhancestherobustnessofpreventivecontrols
Developerand
AnalystSupport
AIactsasanassistantthatexplainssecurityissuesinplainlanguage,recommendsremediationsteps,andreducesmanuale?ortacrosssecure-codingandsecurity-operationswork?ows
Architectureand
Attack-SurfaceManagement
AIevaluatessystemdesignanddependenciestohighlightcomponentsthatincreaseattacksurfaceorintroducesecurityfragility.Itsupportslong-termplanningforhardeningandmodernisation
PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnam
Contacts●
Endnotes
10
Introduction
AICybersecurity
Overview
》
Recommendations
Deepfakesaresyntheticimages,videosoraudiorecordingsgeneratedbyAItoimitaterealpeoplewithahighdegreeofrealism.Theycanmakeitappearasthoughanindividualhassaidordonesomethingtheyneverdid,creatingriskstoinformationsecurity,reputationmanagement,andtrustindigitalcommunications.
Althoughdeepfaketechniquesareimprovingrapidly,thisisoneareawhereeffectivemitigationisalreadyachievable.Risksassociatedwithdeepfakescanbesuccessfullymitigatedbyorganisationswhichadoptrobustcybersecuritycontrolsthatbothdetectandlimitthespreadofmanipulatedcontent.Advancedmachinelearning-baseddetectiontoolscananalyseaudio-visualcuesandmetadatatoidentifyforgedmedia,whiledigitalwatermarkingandprovenance-trackingtechnologieshelpverifytheauthenticityoffiles.Thesecapabilitiescontinuetomatureandareincreasinglybeingintegratedintomainstreamcybersecurityandcontent-verificationtools.However,regularlyupdatingthesedetectionmechanismsisessential,asdeepfaketechniquescontinuetoevolve.
Inadditiontotechnicalsolutions,implementingstrictaccesscontrolsandmulti-factorauthenticationcanreducethelikelihoodofattackersobtainingoriginalcontenttocreateconvincingdeepfakes.Securityawarenesstrainingalsoplaysavitalrole;educatingemployeesandstakeholdersaboutthepotentialsignsanddangersofdeepfakesfostersacultureofvigilance.Bycombiningsophisticateddetectionsystems,accessmanagement,andongoingawarenessinitiatives,organisationscansignificantlymitigatethecybersecurityrisksposedbydeepfakes.
JurisdictionalDeepDive
AustraliaChina(Mainland)HongKongSARIndia
IndonesiaJapanMalaysiaNewZealand
PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes
11
Deepfakes
Introduction
AICybersecurity
Overview
Recommendations
OverviewoftheRegulatoryLandscape
JurisdictionalDeepDive
Australia
nollnaurusgircissAP,drivenbythegrowingfrequencyandseverityofcyberincidentsandthe
China(Mainland)
Thisregulatorypatchworkcreatessignificantchallengesformultinationalfirmsthatmustensuretheircyberriskmanagementframeworksareadaptabletodifferinglocalrequirements.Inaddition,regulatoryexpectationsarerapidlyevolvinginstepwithtechnologicalchange,meaningfirmsmustremainagileandvigilanttomaintaincomplianceandavoidpenaltiesoroperationaldisruptions.
WhilemostjurisdictionsstillrelyongeneralcybersecurityframeworkstosafeguardAIsystems,regulatorsarebeginningtointroduceAI-specificsecurityexpectations.Forexample,somejurisdictionshaveintroducedrulesandguidelinesaimedatmodelrobustness,adversarialtesting,securedatahandling,andprotectionsagainstmodelmanipulation.
HongKongSAR
India
Indonesia
Authoritiesarerespondingbystrengtheningcyber-specificframeworksandembeddingcybersecurityexpectationsaspartofbroaderoperationalresilienceorAIgovernancerequirements.Nevertheless,theregulatorylandscapeacrossAPremainshighlyfragmented,witheachjurisdictioncraftingitsownrules,definitions,andenforcementpriorities.
Japan
Malaysia
NewZealand
JurisdictionssuchasAustralia,Singapore,Japan,China(Mainland)(“China”),SouthKorea,andIndiahaveenactedcomprehensivelawstoaddresscyberrisks.However,therearesignificantdifferencesinthescope,terminology,andenforcementmechanisms.Forexample,whileSingapore’sCybersecurityActfocusesontheprotectionof“criticalinformationinfrastructure”andprescribessector-specificobligations,China’sCybersecurityLawencompassesabroaderrangeofsectors,andmandateslocalisationofcriticaldata.Meanwhile,Japan’sCybersecurityBasicActtakesamorestrategic,coord
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職第一學年(康復治療技術)康復評定技術試題及答案
- 2025年中職助產(chǎn)(助產(chǎn)技術)試題及答案
- 2025年大學(工藝美術)工藝美術概論試題及答案
- 2025年高職第一學年(現(xiàn)代供配電技術)供配電系統(tǒng)運行階段測試試題及答案
- 2025年中職(計算機應用)數(shù)據(jù)庫應用綜合測試題及解析
- 2026年社保服務(參保辦理)考題及答案
- 2025年高職美術教學法(教學方法)試題及答案
- 航空制造角度裝配工藝規(guī)范
- 川北幼兒師范高等專科學?!兜缆饭こ毯瓦x線設計》2025-2026學年第一學期期末試卷
- 湖南醫(yī)藥學院《國際貨運代理》2025-2026學年第一學期期末試卷
- 老公情人簽約協(xié)議書
- 學堂在線雨課堂《唐宋名家詞(河南大學)》網(wǎng)課學堂云單元測試考核答案
- 煤礦班組長安全培訓
- 體育培訓校區(qū)管理制度
- 住宅項目工程總承包管理策劃(可編輯)
- 小學消防安全工作責任體系
- 2025廣西桂林市面向全國高校招聘急需緊缺專業(yè)人才147人筆試備考試卷及答案解析(奪冠)
- 家具擺放施工方案
- 樓體亮化維修合同
- 2025年河南省人民法院聘用書記員考試試題及答案
- 二類洞充填課件
評論
0/150
提交評論