2025年筑牢AI網(wǎng)絡安全防線:新風險環(huán)境下的韌性構建研究報告(英文版)-德勤_第1頁
2025年筑牢AI網(wǎng)絡安全防線:新風險環(huán)境下的韌性構建研究報告(英文版)-德勤_第2頁
2025年筑牢AI網(wǎng)絡安全防線:新風險環(huán)境下的韌性構建研究報告(英文版)-德勤_第3頁
2025年筑牢AI網(wǎng)絡安全防線:新風險環(huán)境下的韌性構建研究報告(英文版)-德勤_第4頁
2025年筑牢AI網(wǎng)絡安全防線:新風險環(huán)境下的韌性構建研究報告(英文版)-德勤_第5頁
已閱讀5頁,還剩90頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

centrefor

RegulatorystrategyAsiapacific

SafeguardingCybersecurityinAI:

BuildingResilienceinaNewRiskLandscape

December2025

Australia

China(Mainland)

NavigatingtheReport

OverviewoftheRegulatoryLandscape

Recommendations

Clickicontonavigatetotherelevantsection

Introduction

AI

Cybersecurity

DeepDive

Philippines

Thailand

Indonesia

Jurisdictional

Singapore

Vietnam

Japan

Malaysia

SouthKorea

HongKongSAR

India

NewZealand

Taiwan(China)

Contacts

Endnotes

Introduction

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

However,despitethepotentialrisks,AIalsoprovidesopportunitiestostrengthencybersecurity.AI-enabledtoolscanhelporganisationsdetectissues,improvethesecurityofsoftwareandsystems,andrespondtoincidentsmorequicklyandconsistently.Firmsthatcombinethesecapabilitieswithstronggovernanceandproportionatecontrolswillbebetterpositionedtomanagetheevolvingcyberthreatlandscape.

CybersecurityisnowfirmlyaBoardlevelresponsibility.TheadditionalrisksintroducedbyAImakestrongoversight,clearlinesofaccountability,andBoardfluencyinAItechnologyessential.Thesecapabilitiesareneedednotonlytoprotectcriticaloperationsandmeetregulatoryobligations,butalsotomaintaincustomerandstakeholdertrust.

ThispaperexamineshowAIisimpactingcybersecurityrisk,howsupervisorsinAParerespondingandwhatorganisationscandotobuildstrongerandmoreresilientdefences.Itoutlineskeyattackvectors,emergingregulatoryexpectations,andpracticalstepsforBoardsandseniorexecutivestobolstertheirfirm’scyberresilience.

WhilstthispaperfocusesonAIsecurityconsiderations,itisimportantforfirmstotakeaholisticviewandaddressallAI-relatedriskswhendevelopingtheirtechnologystrategyandAIsystems.

Artificialintelligence(AI)isreshapingthecybersecuritylandscapeacrossAsiaPacific(AP).

Australia

China(Mainland)

HongKongSAR

EvenbeforetheriseofadvancedAI,theincreasingdigitisationofbusinessoperationshadalreadymadecyber-attacksmorefrequent,scalableandeffective.AIisnowamplifyingthistrendbyenablingmaliciousactorstoworkmorequicklyandproducemoreconvincingandadaptiveattacks.Forexample,AIcanhelpgeneratepersuasivephishingmessagesanddeepfakes,analysesystemstoidentifyweaknesses,andadjustattackmethodsinreal-time.Thislowersthebarrierforattackersandincreasesboththespeedandpotentialimpactofacyberincident.

India

Indonesia

Japan

Malaysia

AsorganisationsadoptAIacrosscoreprocesses,theattacksurfaceisalsoexpanding.AIintroducesnewsystemsanddataflowsintotechnologyarchitecture,includingmodeltrainingenvironments,automateddecisionworkflowsandlarge-scaledatapipelines.Thesecomponentscanpotentiallycreateadditionalpointswherevulnerabilitiesmayarise.Further,theAIsystemsarealsosubjecttoattack.Adversariesmaytrytocorruptthedatausedtotrainmodels,influenceordistortmodeloutputs,orexploitweaknessesinhowthesystemsinterpretandrespondtouserinputs.

NewZealand

Philippines

Singapore

Thesethreatscreateclearbusinessrisks.AI-relatedcyberincidentscancausefinanciallosses,compromiseintellectualproperty,distortcriticaldecisionoutputs,exposesensitivecustomerdata,anderodeorganisationalreputationandstakeholdertrust.Therefore,asAIadoptiongrows,itiscriticalthatrisksmustbeassessedandmanagedaspartofawidercyberdefencestrategy.

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

03

AISecurityvs.AISafety

Forthepurposesofthisreport,wedefineAIsecurityastheprotectionsthatkeepAIsystemsresilientagainstattacksandmisuse.Thisincludesdefendingagainstadversarialinputs,tampereddata,stolenmodels,andattemptstomanipulateorextractmodeloutputs.

WedistinguishthisfromAIsafety,whichconcernshowanAIsystembehavessuchasitsaccuracy,reliability,fairness,andalignmentwithintendedgoals.

Inpractice,thesetwodomainsoftenoverlap.Weaksafety,suchasamodelthatisbrittle,poorlycalibrated,orpronetohallucinationcancreateopeningsthatattackerscanexploit.Conversely,asecurityfailurelikecompromisedtrainingdataormanipulatedcontentcandegradesafetybychangingasystem’sbehavioranderodingtrustinitsoutputs.

ThispaperfocusesonthecybersecurityrisksassociatedwithAIsystemswhilerecognisingtheseriskscanaffectbroadersafetyoutcomesandvice-versa.

NewZealand

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

04

Australia

India

Indonesia

Malaysia

Overview

Recommendations

JurisdictionalDeepDive

Japan

China(Mainland)HongKongSAR

Introduction

AICybersecurity

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

AustraliaChina(Mainland)HongKongSARIndia

IndonesiaJapanMalaysiaNewZealand

AICybersecurity

AICybersecurityRisks

AsorganisationsbegintoadoptandscaleAI,maliciousactorsareevolvingtotargetthesesystems.Sometechniquessuchaspromptinjections,jailbreaksandmodelextractionarerelativelynewandarisefromthewayAImodelsprocessdataandinstructions.Others,includingsupplychaincompromiseortheexploitationofvulnerablecomponents,buildonlongstandingcyber-attackmethods.Nevertheless,theimpactsareamplifiedbyAI’srelianceonexternalmodels,opensourcetoolsandcomplexdatapipelines.Theresultisabroaderandmoredynamicattacksurfacethatcanimpacttheintegrity,confidentialityandreliabilityofAIsystemsandtheprocessestheyunderpin.UnderstandingtheserisksisanimportantfirststepindevelopingthesecuritycontrolsandmonitoringmechanismsneededtokeepAIsystemssafe.

ThetablebelowsummarisessomeofthekeysecurityrisksimpactingAIsystems.

AttacksonModelBehaviour

AttackVector

WhatItIs

HowAttackersExploitIt

WhyItMatters

Promptinjections

MaliciousorcarefullycraftedinstructionsinsertedintopromptsorcontextualdatathatanAImodelreliesontogenerateoutputs.Theseinstructionsareoftenhiddenwithinuserinputs,documents,websitesordatasets

Attackerstrickthemodelintofollowingunintendedinstructionsbyembeddingcommandsinusertext,metadataorexternalcontentpulledintothe

modelIscontext.Thiscanoverrideintendedlogicandcausethemodeltobehaveunpredictably

Promptinjectionscancausethemodeltodisclosesensitiveinformation,performunintendedactions,generateharmfulorunauthorisedoutputsor

underminedownstreamautomatedprocessesthatrelyonmodel-generatedcontent

Jailbreaks

TechniquesthatdeliberatelybypassguardrailsandrestrictionsbuiltintoAIsystems,allowingthemtooutputcontentthatwouldnormallybeblocked

Attackerschainprompts,useroleplay,disguiserequestsorcreatemulti-stepinstructionsthatgraduallyweakenthemodel’sguardrailsuntilitproducesrestrictedorinappropriatecontent

Jailbreaksexpose?rmstothegenerationof

harmful,misleadingornon-compliantoutputs,

whichcancreateregulatory,ethicaland

reputationalrisks.Theycanalsoenableattackerstomapweaknessesinamodel’scontrolframework

Adversarial

promptsorexamples

Inputsthathavebeensubtlyandintentionallyalteredinawaythatmisleadsthemodel,

eventhoughthechangesmaybeimperceptibletohumans

Attackersadjustwords,phrasing,imagesordatapatternssothemodelinterpretsthemincorrectly.Thesemanipulationsexploithowmodelsprocessandweightdi?erentfeatures

Thiscancausemodelstomisclassifyormisinterpretinformation,resultinginunreliabledecisions,

manipulationofautomatedwork?owsorincorrectoutputsinhigh-stakesenvironmentssuchasfrauddetectionorcontentmoderation

PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes

05

Introduction●

Overview

Recommendations●

JurisdictionalDeepDive

Australia●

China(Mainland)●HongKongSAR●

India●

Indonesia●

Japan

Malaysia

AICybersecurity

AttacksonDataand

TrainingPipelines

WhatItIs

AttackVectorHowAttackersExploitItWhyItMatters

●Modelinversion

Poisoningweakensmode|performance,embedsbackdoors,createssystematicinaccuraciesanderodestrustinthesystem.Poisoningattackscanbedi?culttodetect,anddamagecanpersist

acrossiterationsofthemode|

Thiscanexposesensitiveorregulateddata,

vio|ateprivacyob|igationsanda||owattackerstobuilddetailedpro?lesofindividualsordatasets.Regulatorsincreasinglyviewthisasasigni?cantcomplianceandcon?dentialityrisk

Thisunderminesintellectualproperty,reducescompetitiveadvantageandenab|esma|iciousactorstodep|oythesto|enmode|forharmfu|purposes,inc|uding|arge-sca|eattacksor

disinformation

Thedeliberateintroductionofcorrupted,biasedormisleadingdataintotrainingor?ne-tuning

pipe|ines.Poisoneddatamay|ook|egitimatebutisengineeredtodistortmode|behaviour

Amethodofreconstructingsensitiveinformationaboutthetrainingdatabyana|ysingpatternsinthemode|,soutputs.Overtime,attackerscan

inferdetai|sabouttheorigina|dataset

Aprocesswhereanattackerrep|icatesamode|,sfunctiona|ity,|ogicorparametersbyqueryingitrepeatedly,e?ectivelycloningthemodelwithoutdirectaccesstoitscodeortrainingdata

Attackersissuerepeated,carefu||ystructuredqueriesandana|ysereturnedpatternstoinferpersonalattributes,con?dentialinformationorproprietarytrainingdata

Attackerssystematica||yprobethemode|,sinputsandoutputs,oftenusingautomatedtoo|s,unti|theycanreproduceitsdecisionboundariesor

Attackersinsertmanipu|atedsamp|esintodata

sourcesthemode|re|ieson,suchasopen

datasets,web-scrapedmateria|orinterna|updatepipe|ines.lnsomecases,attackersaddItrigger,

patternsthatcausethemode|tobehavedi?erentlyonlyinspeci?cscenarios

Modelextractionortheft

generateanequiva|entmode|

Datapoisoning

NewZealand

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

06

Introduction

AICybersecurity

Overview

ChainandInfrastructure

Supply

Attackson

WhatItIs

Recommendations

JurisdictionalDeepDive

AttackVectorHowAttackersExploitItWhyItMatters

Australia

China(Mainland)

HongKongSAR

India

Indonesia

Japan

Malaysia

NewZealand

Asinglecompromisedcomponentcana?ecteverysystemthatusesit,creatingwidespreadand

hard-to-tracevulnerabilities.Manyorganisationsrelyheavilyonsharedcodeandmodels,thereforeanattackononecomponentcanescalateintoabroadersystemicissueacrosssectorsorregions

Thiscanresultincorruptedmodels,unauthorisedmodelupdates,silenttamperingordisruptionofproductionsystems.Becausepipelinesautomatedeployment,asinglecompromisecanspread

widelyandrapidly

Evenifanorganisation’sownsystemsaresecure,weaknessesinanexternalpartnercancreateapathwayforattackers.Thiscanresultindata

exposure,incorrectmodeloutputsordisruptiontobusinessprocessesthatdependonthose

externalservices

Attackerscompromisepopularopen-source

packagesorpre-trainedmodelssothatany

organisationthatinstallsthemunknowinglyimportstheattacker’scodeormanipulatedmodelweights.Thisallowstheattackertospreadmalwareor

updatedorstored,suchasversion-controlsystemsordeploymentscripts,andinsertchangeswithoutdetection.Thiscanallowthemtomodifyhowa

servicesthattheAIreliesonfordata,processingorfunctionality.TheseareoftenexternaltoolsthatsupplyinputsintotheAIsystem

Compromised

AIdevelopmentpipeline

Third-partyexploitation

Weaknessesorhiddenrisksinopen-source

software,sharedlibrariesorpre-builtAImodelsthatanorganisationdownloadsorintegratesintoitssystems.Thesecomponentsmaycontain

Attacksonthetoolsandsystemsusedtobuild,testanddeployAImodels.Thisincludescoderepositories,modelstoragelocationsand

modelbehaves,disablekeysecuritychecksoraddhiddenfunctions

Insomecases,theyinterceptinformationorfeedincorrectdataintothesystemtoalteroutputs

interfaceswiththird-partyservicesormanipulatethedatabeingsentthroughtheseconnections.

coding?awsormayhavebeentamperedwithbeforedistribution

in?uenceAIbehaviouracrossmanyorganisationsatonce

Compromised

componentsorexternalmodels

Attackerstargettheplaceswheremodelsare

Attackerstakeadvantageofpoorlyprotected

Weaknessesinothercompanies’systemsor

automateddeploymenttools

Philippines

TheseattackvectorsillustratetheAIcyberthreatenvironment,andunderscoretheimportanceofrobustsecuritycontrolsthroughouttheAImodellifecycle.

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

07

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

SupplyChainandThird-PartyRisks

Ashighlightedabove,third-partyrelationshipsandextendedsupplychainsareamajorsourceofcyberandAI-relatedvulnerability,particularlyforfirmsincomplexvendorecosystems.ManyincidentsnowstemfromvendorsandtheAIcapabilitiesembeddedinthesoftwareandservicestheyprovide.Asfirmsconnectmoretoolsanddatapipelines,theycanalsobesusceptibletoweaknessesacrossthisextendedecosystem.Inpractice,acompany’sattacksurfacethereforeexpandstoincludehowitsvendorsdesign,deploy,andupdateAI.

Companiesthatutilisethird-partyinfrastructureshouldbeawarethatvendorpracticesvarysignificantly.SomeprovidershavematuregovernanceandmonitoringprocessesfortheirAImodels;othersarestilldevelopingbasicpoliciesandcontrols.Visibilityintohowvendorsusedata,trainandupdatemodels,andrespondtoissuesisthereforeessentialforunderstandingresidualrisk.

ContractsandoperatingtermsneedtoreflecthowAIfeatureswillevolve,howchangeswillbeannounced,andhowincidentswillbereported.Ongoingdialoguewithkeyvendorsespeciallyaroundnewfeatures,modelchanges,andsystemupdatesiscrucialtoensuresystemsremainsecureandsensitivedataisprotected.

AustraliaChina(Mainland)HongKongSARIndia

Indonesia

Japan

Malaysia

NewZealand

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

08

Introduction

AICybersecurity

Overview

AISecurityTrade-offs

ImplementingcybersecuritymeasuresforAIsystemsrequiresacarefulbalancebetweentheperformanceandsecurityofAIsystems.OrganisationsmustprotectAIassetsagainstincreasinglysophisticatedcyberthreats,whilerecognisingthatgreatersecurityconstraintscandirectlyreducetheaccuracy,adaptability,andoverallutilityofAImodels.AsAIbecomesembeddedincriticalbusinessoperationsanddecision-making,theneedforstrongcybersecuritycontrolisintensifying.Inordertosafeguardagainstkeyriskssuchasdatapoisoning,modeltheftandunauthorisedaccess,firmstypicallydeployarangeofcontrols.Thesesecuritymeasuresincludeencryption,accessmanagement,continuousmonitoringandrigorousauditingofmodelsandtrainingdata.

Akeyconsiderationisthedistinctionbetweenproductivitytools(e.g.,enterprisechatbots,researchtools)andAImodelsthatdrivebusinessdecisions(e.g.,decision-supportalgorithms,model-basedriskengines).Productivitytoolstypicallyoperateonlower-riskdataandcanthereforebedeployedwithlightersecuritycontrolswithoutsignificantlyincreasingexposure.Incontrast,decision-criticalandcustomerfacingAImodelsusuallyrequiremorestringentprotectionsduetothesensitivityoftheunderlyingdataandthepotentialimpactofmodelcompromise.

Applyingauniform,high-securitypostureacrossallAItoolscanunnecessarilydegradeperformanceandreducebusinessvalue,particularlyforlow-risk,high-volumeproductivityapplicationswhereusabilityandspeedareessential.Thechallenge,therefore,liesincalibratingsecurityframeworkstotheriskprofileanduniquecharacteristicsofeachAIusecase.Doingsoallowsfirmstoprotectcriticalassetswithoutconstrainingmodelperformanceorimpedingbusinessproductivity.

Recommendations●

JurisdictionalDeepDive

Australia

China(Mainland)

HongKongSAR

India

Indonesia

Japan

Malaysia

NewZealand

However,manyoftheseprotectionscomewithperformancetrade-offsandcanberesourceintensive.Restrictiveaccesstodata,forexample,canmateriallylimitanAIsystem’sabilitytolearnfromdiverseandrepresentativedatasets,reducingtherobustnessandaccuracyofitsoutputs.Likewise,frequentauthenticationchecksorhighlysegmentedenvironmentscanintroducelatency,disruptreal-timeprocessing,andfrustrateend-userswhoexpectseamlessinteractions.Overlyconservativepoliciescanalsostifleinnovationbypreventingteamsfromexperimentingwithnewusecasesoriteratingmodelsatpace.

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

09

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

AustraliaChina(Mainland)HongKongSARIndia

IndonesiaJapanMalaysiaNewZealand

AI-enabledCybersecurityCapabilities

Ascyberthreatsbecomemorefrequentandcomplex,organisationsareincreasinglyturningtoAItostrengthentheirdefences.Whenusedappropriately,AIcanautomateroutinetasks,detectsuspiciousactivityearlier,andsupportfastermoreaccurateincidentresponse.Thesecapabilitiesenhanceboththeefficiencyandeffectivenessofexistingcybersecuritycontrolswhilehelpingfirmsscaletheirdefencesacrossacomplexdigitalenvironment.

ThreatDetectionandResponse

AIanalysesnetwork,endpoint,anduseractivitytoidentifyanomaliesandsuspiciouspatternsthatmayindicateanemergingthreat.Itprioritisesalertsandproposeslikelycauses,enablingfasterandmoretargetedresponses

SecurePipelineand

DeploymentAutomation

AIpredictsbuildissuesandidenti?escon?gurationweaknessesbeforedeployment.Thishelpsensurethatonlysecurelycon?guredcodeprogressesthroughthepipeline,reducingtheriskofintroducingvulnerabilities

IncidentResponseandMonitoring

AIcorrelatesandsummariseslargevolumesoflogsandtelemetrytoidentifyrootcausesmorequickly.Itautomatespartsoftriageandsupportsmoreconsistentremediationacrossteams

AIisbecominganincreasinglyimportantenablerofmoderncyber-defence.Whilethesetoolsdonotreplaceestablishedcontrolsorhumanjudgement,theysupportmorescalableandefficientsecurityoperations.AsfirmsadoptAI-enabledcapabilities,successwilldependonembeddingthemwithinexistinggovernance,risk,andassuranceframeworkstoensuretheyenhanceratherthancomplicateafirm’scyberdefencestrategy.

AIEnabledSolution

HowdoesthisStrengthensCybersecurity

AIreviewscodeforunsafepatternsandknownvulnerabilitiesasitiswritten,reducingthelikelihoodofsecuritydefectsenteringproductionandloweringremediatione?ort

SecureCodeDevelopment

Policy,Control,and

ComplianceAssurance

AIcontinuouslycheckssystemsagainstinternalsecuritypoliciesandregulatorybaselines,?aggingdeviationsinrealtime.Thisreducestheriskofmiscon?gurations,weakcontrols,andaudit?ndings

SoftwareSupply-ChainSecurity

AIscansthird-partycomponentsandopen-sourcelibrariestodetectvulnerabilities,tampering,orunexpectedchanges.Ithelps?rmsmanagedependencyrisksacrossincreasinglycomplexsoftwareecosystems

SecurityTestingand

VulnerabilityManagement

AIidenti?essecurity-relevantcodeweaknesses,prioritisesvulnerabilityremediationbasedonrisk,andrecommendswhereadditionaltestingisneeded.Thisenhancestherobustnessofpreventivecontrols

Developerand

AnalystSupport

AIactsasanassistantthatexplainssecurityissuesinplainlanguage,recommendsremediationsteps,andreducesmanuale?ortacrosssecure-codingandsecurity-operationswork?ows

Architectureand

Attack-SurfaceManagement

AIevaluatessystemdesignanddependenciestohighlightcomponentsthatincreaseattacksurfaceorintroducesecurityfragility.Itsupportslong-termplanningforhardeningandmodernisation

PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnam

Contacts●

Endnotes

10

Introduction

AICybersecurity

Overview

Recommendations

Deepfakesaresyntheticimages,videosoraudiorecordingsgeneratedbyAItoimitaterealpeoplewithahighdegreeofrealism.Theycanmakeitappearasthoughanindividualhassaidordonesomethingtheyneverdid,creatingriskstoinformationsecurity,reputationmanagement,andtrustindigitalcommunications.

Althoughdeepfaketechniquesareimprovingrapidly,thisisoneareawhereeffectivemitigationisalreadyachievable.Risksassociatedwithdeepfakescanbesuccessfullymitigatedbyorganisationswhichadoptrobustcybersecuritycontrolsthatbothdetectandlimitthespreadofmanipulatedcontent.Advancedmachinelearning-baseddetectiontoolscananalyseaudio-visualcuesandmetadatatoidentifyforgedmedia,whiledigitalwatermarkingandprovenance-trackingtechnologieshelpverifytheauthenticityoffiles.Thesecapabilitiescontinuetomatureandareincreasinglybeingintegratedintomainstreamcybersecurityandcontent-verificationtools.However,regularlyupdatingthesedetectionmechanismsisessential,asdeepfaketechniquescontinuetoevolve.

Inadditiontotechnicalsolutions,implementingstrictaccesscontrolsandmulti-factorauthenticationcanreducethelikelihoodofattackersobtainingoriginalcontenttocreateconvincingdeepfakes.Securityawarenesstrainingalsoplaysavitalrole;educatingemployeesandstakeholdersaboutthepotentialsignsanddangersofdeepfakesfostersacultureofvigilance.Bycombiningsophisticateddetectionsystems,accessmanagement,andongoingawarenessinitiatives,organisationscansignificantlymitigatethecybersecurityrisksposedbydeepfakes.

JurisdictionalDeepDive

AustraliaChina(Mainland)HongKongSARIndia

IndonesiaJapanMalaysiaNewZealand

PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes

11

Deepfakes

Introduction

AICybersecurity

Overview

Recommendations

OverviewoftheRegulatoryLandscape

JurisdictionalDeepDive

Australia

nollnaurusgircissAP,drivenbythegrowingfrequencyandseverityofcyberincidentsandthe

China(Mainland)

Thisregulatorypatchworkcreatessignificantchallengesformultinationalfirmsthatmustensuretheircyberriskmanagementframeworksareadaptabletodifferinglocalrequirements.Inaddition,regulatoryexpectationsarerapidlyevolvinginstepwithtechnologicalchange,meaningfirmsmustremainagileandvigilanttomaintaincomplianceandavoidpenaltiesoroperationaldisruptions.

WhilemostjurisdictionsstillrelyongeneralcybersecurityframeworkstosafeguardAIsystems,regulatorsarebeginningtointroduceAI-specificsecurityexpectations.Forexample,somejurisdictionshaveintroducedrulesandguidelinesaimedatmodelrobustness,adversarialtesting,securedatahandling,andprotectionsagainstmodelmanipulation.

HongKongSAR

India

Indonesia

Authoritiesarerespondingbystrengtheningcyber-specificframeworksandembeddingcybersecurityexpectationsaspartofbroaderoperationalresilienceorAIgovernancerequirements.Nevertheless,theregulatorylandscapeacrossAPremainshighlyfragmented,witheachjurisdictioncraftingitsownrules,definitions,andenforcementpriorities.

Japan

Malaysia

NewZealand

JurisdictionssuchasAustralia,Singapore,Japan,China(Mainland)(“China”),SouthKorea,andIndiahaveenactedcomprehensivelawstoaddresscyberrisks.However,therearesignificantdifferencesinthescope,terminology,andenforcementmechanisms.Forexample,whileSingapore’sCybersecurityActfocusesontheprotectionof“criticalinformationinfrastructure”andprescribessector-specificobligations,China’sCybersecurityLawencompassesabroaderrangeofsectors,andmandateslocalisationofcriticaldata.Meanwhile,Japan’sCybersecurityBasicActtakesamorestrategic,coord

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論