江蘇省南京市鹽城市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第1頁
江蘇省南京市鹽城市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第2頁
江蘇省南京市鹽城市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第3頁
江蘇省南京市鹽城市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第4頁
江蘇省南京市鹽城市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市鹽城市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將點(diǎn)的極坐標(biāo)化成直角坐標(biāo)是(

)A. B.C. D.2.一盒子里有黑色、紅色、綠色的球各一個(gè),現(xiàn)從中選出一個(gè)球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件3.過點(diǎn)且與橢圓有相同焦點(diǎn)的雙曲線方程為()A B.C. D.4.直線被圓所截得的弦長為()A. B.C. D.5.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b6.已知雙曲線,過點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),則能使點(diǎn)P為線段AB中點(diǎn)的直線l的條數(shù)為()A.0 B.1C.2 D.37.雙曲線:的實(shí)軸長為()A. B.C.4 D.28.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.509.已知橢圓:的離心率為,則實(shí)數(shù)()A. B.C. D.10.已知空間向量,則()A. B.C. D.11.不等式的解集為()A.或 B.C. D.12.已知圓,則圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為()A.-1 B.C.+1 D.6二、填空題:本題共4小題,每小題5分,共20分。13.瑞士數(shù)學(xué)家歐拉(Euler)1765年在所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,,則歐拉線的方程為______14.設(shè),若直線與直線平行,則的值是________15.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則_______16.若橢圓W:的離心率是,則m=___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列滿足,數(shù)列的前項(xiàng)和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;(2)設(shè),若對任意正整數(shù),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.18.(12分)求下列函數(shù)的導(dǎo)數(shù):(1);(2).19.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)零點(diǎn)個(gè)數(shù)20.(12分)如圖,在四棱錐中,底面是矩形,平面于點(diǎn)M連接.(1)求證:平面;(2)求平面與平面所成角的余弦值.21.(12分)已知函數(shù),且)的圖象經(jīng)過點(diǎn)和

.(1)求實(shí)數(shù),的值;(2)若,求數(shù)列前項(xiàng)和

.22.(10分)設(shè)F為橢圓的右焦點(diǎn),過點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】本題考查極坐標(biāo)與直角坐標(biāo)互化由點(diǎn)M的極坐標(biāo),知極坐標(biāo)與直角坐標(biāo)的關(guān)系為,所以的直角坐標(biāo)為即故正確答案為A2、A【解析】根據(jù)事件的關(guān)系進(jìn)行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點(diǎn)睛】本題考查事件關(guān)系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎(chǔ)題.3、D【解析】設(shè)雙曲線的方程為,再代點(diǎn)解方程即得解.【詳解】解:由得,所以橢圓的焦點(diǎn)為.設(shè)雙曲線的方程為,因?yàn)殡p曲線過點(diǎn),所以.所以雙曲線的方程為.故選:D4、A【解析】求得圓心坐標(biāo)和半徑,結(jié)合點(diǎn)到直線的距離公式和圓的弦長公式,即可求解.【詳解】由圓的方程可知圓心為,半徑為,圓心到直線的距離,所以弦長為.故選:A.5、D【解析】運(yùn)用不等式性質(zhì),結(jié)合特殊值法,對選項(xiàng)注逐一判斷正誤即可.【詳解】選項(xiàng)A中,若,時(shí),則成立,否則,若,則,顯然錯(cuò)誤,故選項(xiàng)A錯(cuò)誤;選項(xiàng)B中,若,,則能推出,否則,若,則,顯然錯(cuò)誤,故選項(xiàng)B錯(cuò)誤;選項(xiàng)C中,若,則,顯然錯(cuò)誤,故選項(xiàng)C錯(cuò)誤;選項(xiàng)D中,若,顯然,由不等式性質(zhì)知不等式兩邊同乘以一個(gè)正數(shù),不等式不變號,即.故選:D6、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時(shí),與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個(gè)不同點(diǎn),則,,又根據(jù)是線段的中點(diǎn),則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時(shí),過點(diǎn)的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點(diǎn)的直線方程為或,①當(dāng)斜率存在時(shí)有,得(*)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有:,即又方程(*)的兩個(gè)不同的根是兩交點(diǎn)、的橫坐標(biāo),又為線段的中點(diǎn),,即,,使但使,因此當(dāng)時(shí),方程①無實(shí)數(shù)解故過點(diǎn)與雙曲線交于兩點(diǎn)、且為線段中點(diǎn)的直線不存在②當(dāng)時(shí),經(jīng)過點(diǎn)的直線不滿足條件.綜上,符合條件的直線不存在故選:A7、A【解析】根據(jù)雙曲線的幾何意義即可得到結(jié)果.【詳解】因?yàn)殡p曲線的實(shí)軸長為2a,而雙曲線中,,所以其實(shí)軸長為故選:A8、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A9、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因?yàn)?,所以所以,解?故選:C10、C【解析】A利用向量模長的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實(shí)數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運(yùn)算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因?yàn)椋訟不正確:因?yàn)椴淮嬖趯?shí)數(shù)使,所以B不正確;因?yàn)椋?,所以C正確;因?yàn)椋?,所以D不正確故選:C11、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A12、A【解析】先求出圓心和半徑,求出圓心到坐標(biāo)原點(diǎn)的距離,從而求出圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點(diǎn)的距離為,故圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離最小值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定信息,利用三角形重心坐標(biāo)公式求出的重心,再結(jié)合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點(diǎn),,,則的重心,顯然的外心在線段AC中垂線上,設(shè),由得:,解得:,即點(diǎn),直線,化簡整理得:,所以歐拉線的方程為.故答案:14、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當(dāng)時(shí),兩直線分別為和,此時(shí),兩直線不平行;當(dāng)時(shí),要使得兩直線平行,即,解得,.故答案為:15、【解析】根據(jù)給定條件求出正項(xiàng)等比數(shù)列的公比即可計(jì)算作答.【詳解】設(shè)正項(xiàng)等比數(shù)列的公比為,依題意,,即,而,解得,所以.故答案為:16、或【解析】按照橢圓的焦點(diǎn)在軸和在軸上兩種情況分別求解,可得所求結(jié)果【詳解】①當(dāng)橢圓的焦點(diǎn)在軸上時(shí),則有,由題意得,解得②當(dāng)橢圓的焦點(diǎn)在軸上時(shí),則有,由題意得,解得綜上可得或故答案為或【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一個(gè)是注意分類討論思想方法的運(yùn)用,注意橢圓焦點(diǎn)所在的位置;二是解題時(shí)要分清橢圓方程中各個(gè)參數(shù)的幾何意義,然后再根據(jù)離心率的定義求解三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項(xiàng)公式后利用累加法即可求的通項(xiàng)公式;(2)裂項(xiàng)相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當(dāng)時(shí),得到,∴,當(dāng)時(shí),是以4為首項(xiàng),2為公差的等差數(shù)列∴當(dāng)時(shí),當(dāng)時(shí),也滿足上式,.【小問2詳解】令,當(dāng),因此的最小值為,的最大值為對任意正整數(shù),當(dāng)時(shí),恒成立,得,即在時(shí)恒成立,,解得t<0或t>3.18、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的加法運(yùn)算法則,結(jié)合常見函數(shù)的導(dǎo)數(shù)進(jìn)行求解即可;(2)根據(jù)導(dǎo)數(shù)的加法和乘法的運(yùn)算法則,結(jié)合常見函數(shù)的導(dǎo)數(shù)進(jìn)行求解即可.【小問1詳解】;【小問2詳解】.19、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點(diǎn)即可.【小問1詳解】當(dāng)時(shí),,易知定義域?yàn)镽,,當(dāng)時(shí),;當(dāng)或時(shí),故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問2詳解】當(dāng)時(shí),x正0負(fù)0正單增極大值單減極小值單增當(dāng)時(shí),恒成立,∴;當(dāng)時(shí),①當(dāng)時(shí),,∴無零點(diǎn);②當(dāng)時(shí),,∴有1個(gè)零點(diǎn);③當(dāng)時(shí),,又當(dāng)時(shí),單調(diào)遞增,,∴有2個(gè)零點(diǎn);綜上所述:當(dāng)時(shí),無零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn)【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用20、(1)證明見詳解(2)【解析】(1)連接,交于點(diǎn),則為中點(diǎn),再由等腰三角形三線合一可知為中點(diǎn),連接,利用中位線可知,根據(jù)直線與平面平行的判定定理即可證明;(2)根據(jù)題意建立空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,利用向量法即可求出兩平面所成角的余弦值.【小問1詳解】連接,交于點(diǎn),則為中點(diǎn),因?yàn)?,于,則為中點(diǎn),連接,則,又因?yàn)槠矫妫矫?所以平面;【小問2詳解】如圖所示,以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,設(shè)平面的一個(gè)法向量為,由可得,令,得,即,易知平面的一個(gè)法向量為,設(shè)平面與平面所成角為,,則平面與平面所成角的余弦值為.21、(1),(2)【解析】(1)將A、B點(diǎn)坐標(biāo)代入,計(jì)算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結(jié)合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,

.【小問2詳解】由(1)得,又,所以,故

.22、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過點(diǎn),故直線由可得,解得即點(diǎn),又,故直線;(2)設(shè),方法一:設(shè)直線,代入橢圓方程可得:所以,故,又均不為0,故,即為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論