版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆黑龍江省綏化市青岡縣數(shù)學高一上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的圖像過點和,則在定義域上是A.奇函數(shù) B.偶函數(shù)C.減函數(shù) D.增函數(shù)2.我國古代數(shù)學名著《九章算術》里有一道關于玉石的問題:“今有玉方一寸,重七兩;石方一寸,重六兩.今有石方三寸,中有玉,并重十一斤(兩).問玉、石重各幾何?”如圖所示的程序框圖反映了對此題的一個求解算法,運行該程序框圖,則輸出的,分別為()A., B.,C., D.,3.下圖記錄了某景區(qū)某年月至月客流量情況:根據(jù)該折線圖,下列說法正確的是()A.景區(qū)客流量逐月增加B.客流量的中位數(shù)為月份對應的游客人數(shù)C.月至月的客流量情況相對于月至月波動性更小,變化比較平穩(wěn)D.月至月的客流量增長量與月至月的客流量回落量基本一致4.命題“,”的否定為()A., B.,C., D.,5.一半徑為2m的水輪,水輪圓心O距離水面1m;已知水輪按逆時針做勻速轉(zhuǎn)動,每3秒轉(zhuǎn)一圈,且當水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.如圖所示,建立直角坐標系,將點P距離水面的高度h(單位:m)表示為時間t(單位:s)的函數(shù),記,則()A.0 B.1C.3 D.46.已知向量滿足,且,若向量滿足,則的取值范圍是A. B.C D.7.關于,,下列敘述正確的是()A.若,則是的整數(shù)倍B.函數(shù)的圖象關于點對稱C.函數(shù)的圖象關于直線對稱D.函數(shù)在區(qū)間上為增函數(shù).8.函數(shù)在的圖象大致為A. B.C. D.9.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,其終邊與單位圓相交于點,則()A. B.C. D.10.已知關于的方程的兩個實根為滿足則實數(shù)的取值范圍為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的圖象與的圖象關于對稱,則_________.12.已知若,則().13.下列函數(shù)圖象與x軸都有交點,其中不能用二分法求其零點的是___________.(寫出所有符合條件的序號)14.若,則________.15.函數(shù)f(x)=cos的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)的解析式為_______,函數(shù)的值域是________16.已知角的終邊過點,則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.求下列關于的不等式的解集:(1);(2)18.已知函數(shù)是定義在上的奇函數(shù).(1)求實數(shù)的值,并求函數(shù)的值域;(2)判斷函數(shù)的單調(diào)性(不需要說明理由),并解關于的不等式.19.在平面直角坐標系中,已知角的頂點為坐標原點,始邊為軸的正半軸,終邊過點(1)求的值;(2)求的值20.食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設甲大棚的資金投入為(單位:萬元),每年兩個大棚的總收入為(單位:萬元)(1)求的值;(2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入最大21.如圖,在正方體中,點分別是棱的中點.求證:(1)平面;(2)平面
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】∵f(x)的圖象過點(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函數(shù).∵f(x)的定義域是(3,+∞),不關于原點對稱.∴f(x)為非奇非偶函數(shù)故選D2、C【解析】執(zhí)行程序框圖,;;;,結束循環(huán),輸出的分別為,故選C.【方法點睛】本題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.3、C【解析】根據(jù)折線圖,由中位數(shù)求法、極差的意義,結合各選項的描述判斷正誤即可.【詳解】A:景區(qū)客流量有增有減,故錯誤;B:由圖知:按各月份客流量排序為且是10個月份的客流量,因此數(shù)據(jù)的中位數(shù)為月份和月份對應客流量的平均數(shù),故錯誤;C:由月至月的客流量相對于月至月的客流量:極差較小且各月份數(shù)據(jù)相對比較集中,故波動性更小,正確;D:由折線圖知:月至月的客流量增長量與月至月的客流量回落量相比明顯不同,故錯誤.故選:C4、C【解析】由全稱命題的否定是特稱命題可得答案.【詳解】根據(jù)全稱命題的否定是特稱命題,所以“,”的否定為“,”.故選:C.5、C【解析】根據(jù)題意設h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,寫出函數(shù)解析式,計算f(t)+f(t+1)+f(t+2)的值【詳解】根據(jù)題意,設h=f(t)=Asin(ωt+φ)+k,(φ<0),則A=2,k=1,因為T=3,所以ω,所以h=2sin(t+φ)+1,又因為t=0時,h=0,所以0=2sinφ+1,所以sinφ,又因為φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故選:C6、B【解析】由題意利用兩個向量加減法的幾何意義,數(shù)形結合求得的取值范圍.【詳解】設,根據(jù)作出如下圖形,則當時,則點的軌跡是以點為圓心,為半徑的圓,且結合圖形可得,當點與重合時,取得最大值;當點與重合時,取得最小值所以的取值范圍是故當時,的取值范圍是故選:B7、B【解析】由題意利用余弦函數(shù)的圖象和性質(zhì),逐一判斷各個結論是否正確,從而得出結論.【詳解】對于A,的周期為,若,則是的整數(shù)倍,故A錯誤;對于B,當時,,則函數(shù)的圖象關于點中心對稱,B正確;對于C,當時,,不是函數(shù)最值,函數(shù)的圖象不關于直線對稱,C錯誤;對于D,,,則不單調(diào),D錯誤故選:B.8、C【解析】當時,,去掉D;當時,,去掉B;因為,所以去A,選C.點睛:(1)運用函數(shù)圖象解決問題時,先要正確理解和把握函數(shù)圖象本身的含義及其表示的內(nèi)容,熟悉圖象所能夠表達的函數(shù)的性質(zhì).(2)在研究函數(shù)性質(zhì)特別是單調(diào)性、最值、零點時,要注意用好其與圖象的關系,結合圖象研究.9、C【解析】由已知利用任意角的三角函數(shù)求得,再由二倍角的余弦公式求解即可【詳解】解:因為角的終邊與單位圓相交于點,則,故選:C10、D【解析】利用二次方程實根分布列式可解得.【詳解】設,根據(jù)二次方程實根分布可列式:,即,即,解得:.故選D.【點睛】本題考查了二次方程實根的分布.屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】求出的反函數(shù)即得【詳解】因為函數(shù)的圖象與的圖象關于對稱,所以是的反函數(shù),的值域是,由得,即,所以故答案為:12、【解析】利用平面向量平行的坐標表示進行求解.【詳解】因為,所以,即;故答案:.【點睛】本題主要考查平面向量平行的坐標表示,兩向量平行坐標分量對應成比例,側重考查數(shù)學運算的核心素養(yǎng).13、(1)(3)【解析】根據(jù)二分法所求零點的特點,結合圖象可確定結果.【詳解】用二分法只能求“變號零點”,(1),(3)中的函數(shù)零點不是“變號零點”,故不能用二分法求故答案為:(1)(3)14、【解析】由,根據(jù)三角函數(shù)的誘導公式進行轉(zhuǎn)化求解即可.詳解】,,則,故答案為:.15、①.②.【解析】由題意利用函數(shù)的圖象變換規(guī)律求得的解析式,可得的解析式,再根據(jù)余弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得的值域【詳解】函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,函數(shù),,故當時,取得最大值為;當時,取得最小值為,故的值域為,,故答案為:;,16、【解析】根據(jù)三角函數(shù)的定義求出r即可.【詳解】角的終邊過點,,則,故答案為【點睛】本題主要考查三角函數(shù)值的計算,根據(jù)三角函數(shù)的定義是解決本題的關鍵.三角函數(shù)的定義將角的終邊上的點的坐標和角的三角函數(shù)值聯(lián)系到一起,.知道終邊上的點的坐標即可求出角的三角函數(shù)值,反之也能求點的坐標.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)答案見解析.【解析】(1)將原不等式變形為,再利用分式不等式的解法可得原不等式的解集;(2)分、、三種情況討論,利用二次不等式的解法可得原不等式的解集.【小問1詳解】解:由得,解得或,故不等式的解集為或.【小問2詳解】解:當時,原不等式即為,該不等式的解集為;當時,,原不等式即為.①若,則,原不等式的解集為或;②若,則,原不等式的解集為或.綜上所述,當時,原不等式的解集為;當時,原不等式的解集為或;當時,原不等式解集為或.18、(1),的值域為;(2)在上單調(diào)遞增,不等式的解集為.【解析】(1)根據(jù)定義域為R時,代入即可求得實數(shù)的值;根據(jù)函數(shù)單調(diào)性,結合指數(shù)函數(shù)的性質(zhì)即可求得值域.(2)根據(jù)解析式判斷函數(shù)的單調(diào)性;結合函數(shù)單調(diào)性即可解不等式.【詳解】(1)由題意易知,,故,所以,,故函數(shù)的值域為(2)由(1)知,易知在上單調(diào)遞增,且,故,所以不等式的解集為.【點睛】本題考查了奇函數(shù)性質(zhì)的綜合應用,根據(jù)函數(shù)單調(diào)性解不等式,屬于基礎題.19、(1)(2)當時,;當時,【解析】(1)根據(jù)三角函數(shù)的定義及誘導公式、同角三角函數(shù)基本關系化簡求解;(2)分,分別由定義求出三角函數(shù)值求解即可.【小問1詳解】由角的終邊過點,得,所以【小問2詳解】當時,,所以當時,,所以綜上,當時,;當時,20、(1);(2)當甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大.【解析】(1)根據(jù)題意,可分別求得甲、乙兩個大棚的資金投入值,代入解析式即可求得總收益.(2)表示出總收益的表達式,并求得自變量取值范圍,利用換元法轉(zhuǎn)化為二次函數(shù)形式,即可確定最大值.【詳解】(1)當甲大棚的資金投入為50萬元時,乙大棚資金投入為150萬元,則由足,可得總收益為萬元;(2)根據(jù)題意,可知總收益為滿足,解得,令,所以,因為,所以當即時總收益最大,最大收益為萬元,所以當甲大棚投入資金為128萬元,乙大棚
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手機訂購協(xié)議書
- 苗圃購貨協(xié)議書
- 苗木栽植合同協(xié)議
- 蘋果簽署協(xié)議書
- 藿香苗購銷協(xié)議書
- 視力訓練協(xié)議書
- 讓利銷售協(xié)議書
- 設備訂購協(xié)議書
- 設計師紙協(xié)議書
- 評估協(xié)議合同書
- 非開挖頂管合同范本
- 雨課堂學堂在線學堂云民族學導論專題中央民族大學單元測試考核答案
- 招標代理公司制度與流程匯編
- 課題申報書:“職教出?!睉?zhàn)略下中國職業(yè)教育國際化路徑與策略研究
- 2025年廣東省粵科金融集團有限公司招聘筆試參考題庫含答案解析
- 正式供銷合同范例
- 成品保護圖冊
- 血透高鉀患者個案護理
- 中國玉石及玉文化鑒賞智慧樹知到期末考試答案章節(jié)答案2024年同濟大學
- 影視音樂賞析智慧樹知到期末考試答案2024年
- 2021-2022學年北京市西城區(qū)五年級(上)期末數(shù)學試卷及參考答案
評論
0/150
提交評論