北京溫泉第二中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第1頁
北京溫泉第二中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第2頁
北京溫泉第二中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第3頁
北京溫泉第二中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第4頁
北京溫泉第二中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京溫泉第二中學八年級上冊壓軸題數(shù)學模擬試卷及答案一、壓軸題1.對定義一種新運算,規(guī)定:(其中均為非零常數(shù)).例如:.(1)已知.①求的值;②若關于的不等式組恰好有3個整數(shù)解,求的取值范圍;(2)當時,對任意有理數(shù)都成立,請直接寫出滿足的關系式.學習參考:①,即單項式乘以多項式就是用單項式去乘多項式的每一項,再把所得的結果相加;②,即多項式乘以多項式就是用一個多項式的每一項去乘另一個多項式的每一項,再把所得的結果相加.解析:(1)①;②42≤a<54;(2)m=2n【解析】【分析】(1)①構建方程組即可解決問題;②根據(jù)不等式即可解決問題;(2)利用恒等式的性質,根據(jù)關系式即可解決問題.【詳解】解:(1)①由題意得,解得,②由題意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3個整數(shù)解,∴2≤<3.∴42≤a<54;(2)由題意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵對任意有理數(shù)x,y都成立,∴m=2n.【點睛】本題考查一元一次不等式、二元一次方程組、恒等式等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.2.如圖,在中,,,點為內(nèi)一點,且.(1)求證:;(2)若,為延長線上的一點,且.①求的度數(shù).②若點在上,且,請判斷、的數(shù)量關系,并說明理由.③若點為直線上一點,且為等腰,直接寫出的度數(shù).解析:(1)證明見解析;(2)①;②,理由見解析;③7.5°或15°或82.5°或150°【解析】【分析】(1)利用線段的垂直平分線的性質即可證明;(2)①利用SSS證得△ADC≌△BDC,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解題;②連接MC,易證△MCD為等邊三角形,即可證明△BDC≌△EMC即可解題;③分EN=EC、EN=CN、CE=CN三種情形討論,畫出圖形,利用等腰三角形的性質即可求解.【詳解】(1)∵CB=CA,DB=DA,∴CD垂直平分線段AB,∴CD⊥AB;(2)①在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ACD=∠BCD=∠BCA=45°,∠CAD=∠CBD=15°,∴∠BDC=180-45°-15°=120°;②結論:ME=BD,理由:連接MC,∵,,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM,∠CDE=60°,∴△MCD為等邊三角形,∴CM=CD,∵EC=CA=CB,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC和△EMC中,,∴△BDC≌△EMC(AAS),∴ME=BD;③當EN=EC時,∠=7.5°或∠==82.5°;當EN=CN時,∠==150°;當CE=CN時,點N與點A重合,∠CNE=15°,所以∠CNE的度數(shù)為7.5°或15°或82.5°或150°.【點睛】本題考查了全等三角形的判定和性質、等邊三角形的判定和性質、等腰三角形的性質和判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考壓軸題.3.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側,過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結論;(2)根據(jù)角平分線的定義和平行線的性質即可得到結論;(3)根據(jù)角平分線的定義和平行線的性質即可得到結論;(4)根據(jù)角平分線的定義,平行線的性質,三角形外角的性質即可得到結論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質,平行線的判定和性質,角平分線的定義,正確的識別圖形進行推理是解題的關鍵.4.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過點C,過點A,B分別作AD⊥DE,BE⊥DE,垂足分別為點D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長;(2)如圖2,點M以3個單位長度/秒的速度從點C出發(fā)沿著邊CA運動,到終點A,點N以8個單位長度/秒的速度從點B出發(fā)沿著線BC—CA運動,到終點A.M,N兩點同時出發(fā),運動時間為t秒(t>0),當點N到達終點時,兩點同時停止運動,過點M作PM⊥DE于點P,過點N作QN⊥DE于點Q;①當點N在線段CA上時,用含有t的代數(shù)式表示線段CN的長度;②當t為何值時,點M與點N重合;③當△PCM與△QCN全等時,則t=.解析:(1)①證明見解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當點N在線段CA上時,根據(jù)CN=CN?BC即可得出答案;②點M與點N重合時,CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當點N在線段BC上時,△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當點N在線段CA上時,△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當點N在線段CA上時,如圖3所示:CN=CN?BC=8t?10;②點M與點N重合時,CM=CN,即3t=8t?10,解得:t=2,∴當t為2秒時,點M與點N重合;③分兩種情況:當點N在線段BC上時,△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當點N在線段CA上時,△PCM≌△QCN,點M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當△PCM與△QCN全等時,則t等于s或2s,故答案為:s或2s.【點睛】本題是三角形綜合題目,考查了全等三角形的判定與性質、等腰直角三角形的性質、直角三角形的性質、分類討論等知識;本題綜合性強,熟練掌握全等三角形的判定與性質是解題的關鍵.5.已知ABC,P是平面內(nèi)任意一點(A、B、C、P中任意三點都不在同一直線上).連接PB、PC,設∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當點P在ABC內(nèi)時,①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關系,并證明你得到的結論.(2)當點P在ABC外時,直接寫出s、t、x、y之間所有可能的數(shù)量關系,并畫出相應的圖形.解析:(1)①100;②x=y+s+t;(2)見詳解.【解析】【分析】(1)①利用三角形的內(nèi)角和定理即可解決問題;②結論:x=y+s+t.利用三角形內(nèi)角和定理即可證明;(2)分6種情形分別求解即可解決問題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點睛】本題考查三角形的內(nèi)角和定理,三角形的外角的性質等知識,解題的關鍵是學會用分類討論的思想思考問題.6.如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BP=cm,CQ=cm.(2)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;(3)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?(4)若點Q以(3)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次相遇?解析:(1)BP=3cm,CQ=3cm;(2)全等,理由詳見解析;(3);(4)經(jīng)過s點P與點Q第一次相遇.【解析】【分析】(1)速度和時間相乘可得BP、CQ的長;(2)利用SAS可證三角形全等;(3)三角形全等,則可得出BP=PC,CQ=BD,從而求出t的值;(4)第一次相遇,即點Q第一次追上點P,即點Q的運動的路程比點P運動的路程多10+10=20cm的長度.【詳解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,點Q的運動速度與點P的運動速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,點D為AB的中點,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵點Q的運動速度與點P的運動速度不相等,∴BP與CQ不是對應邊,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,∴點P,點Q運動的時間t=s,∴cm/s;(4)設經(jīng)過x秒后點P與點Q第一次相遇.由題意,得x=3x+2×10,解得∴經(jīng)過s點P與點Q第一次相遇.【點睛】本題考查動點問題,解題關鍵還是全等的證明和利用,將動點問題視為定點問題來分析可簡化思考過程.7.(1)問題發(fā)現(xiàn).如圖1,和均為等邊三角形,點、、均在同一直線上,連接.①求證:.②求的度數(shù).③線段、之間的數(shù)量關系為__________.(2)拓展探究.如圖2,和均為等腰直角三角形,,點、、在同一直線上,為中邊上的高,連接.①請判斷的度數(shù)為____________.②線段、、之間的數(shù)量關系為________.(直接寫出結論,不需證明)解析:(1)①詳見解析;②60°;③;(2)①90°;②【解析】【分析】(1)易證∠ACD=∠BCE,即可求證△ACD≌△BCE,根據(jù)全等三角形對應邊相等可求得AD=BE,根據(jù)全等三角形對應角相等即可求得∠AEB的大小;(2)易證△ACD≌△BCE,可得∠ADC=∠BEC,進而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解題.【詳解】解:(1)①證明:∵和均為等邊三角形,∴,,又∵,∴,∴.②∵為等邊三角形,∴.∵點、、在同一直線上,∴,又∵,∴,∴.③,∴.故填:;(2)①∵和均為等腰直角三角形,∴,,又∵,∴,∴,在和中,,∴,∴.∵點、、在同一直線上,∴,∴.②∵,∴.∵,,∴.又∵,∴,∴.故填:①90°;②.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應邊相等、對應角相等的性質,本題中求證△ACD≌△BCE是解題的關鍵.8.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點D.①當α=70°時,∠BDC度數(shù)=度(直接寫出結果);②∠BDC的度數(shù)為(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).(3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)(1)①125°;②,(2);(3)【解析】【分析】(1)①由三角形內(nèi)角和定理易得∠ABC+∠ACB=110°,然后根據(jù)角平分線的定義,結合三角形內(nèi)角和定理可求∠BDC;②由三角形內(nèi)角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推導方法即可求解;(2)由三角形外角性質得,然后結合角平分線的定義求解;(3)由折疊的對稱性得,結合(1)②的結論可得答案.【詳解】解:(1)①∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣70°)=125°②∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α.故答案分別為125°,90°+α.(2)∵BF和CF分別平分∠ABC和∠ACE∴,,∴=即.(3)由軸對稱性質知:,由(1)②可得,∴.【點睛】本題考查三角形中與角平分線有關的角度計算,熟練掌握三角形內(nèi)角和定理,以及三角形的外角性質是解題的關鍵.9.如圖所示,在平面直角坐標系中,已知點的坐標,過點作軸,垂足為點,過點作直線軸,點從點出發(fā)在軸上沿著軸的正方向運動.(1)當點運動到點處,過點作的垂線交直線于點,證明,并求此時點的坐標;(2)點是直線上的動點,問是否存在點,使得以為頂點的三角形和全等,若存在求點的坐標以及此時對應的點的坐標,若不存在,請說明理由.解析:(1)證明見解析;;(2)存在,,或,或,或,或,或,.【解析】【分析】(1)通過全等三角形的判定定理ASA證得△ABP≌△PCD,由全等三角形的對應邊相等證得AP=DP,DC=PB=3,易得點D的坐標;(2)設P(a,0),Q(2,b).需要分類討論:①AB=PC,BP=CQ;②AB=CQ,BP=PC.結合兩點間的距離公式列出方程組,通過解方程組求得a、b的值,得解.【詳解】(1)軸在和中,(2)設,①,,解得或,或,或,或,②,,,解得,或,綜上:,或,或,或,或,或,【點睛】考查了三角形綜合題.涉及到了全等三角形的判定與性質,兩點間的距離公式,一元一次絕對值方程組的解法等知識點.解答(2)題時,由于沒有指明全等三角形的對應邊(角),所以需要分類討論,以防漏解.10.(閱讀材科)小明同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的項角的頂點,并把它們的底角頂點連接起來則形成一組全等的三角形,小明把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點O,連接AO,下列結論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號填在橫線上).(延伸應用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關系.解析:(1)證明見解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質得出∠BAD=∠CAE,即可得出結論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進而得出∠AOE=60°,再判斷出BF<CF,進而判斷出∠OBC>30°,即可得出結論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進而判斷出△ABD≌△CBP(SAS),即可得出結論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點睛】此題考查三角形綜合題,等腰三角形的性質,等邊三角形的性質,全等三角形的判定和性質,構造等邊三角形是解題的關鍵.11.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點D,分別交BC、BM于點E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點E為BC上一點,AE交BM于點F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.解析:(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點睛】本題考查全等三角形的判定和性質、等邊三角形的性質、等腰三角形的判定和性質、直角三角形30度角性質等知識,解題的關鍵是能夠正確添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.12.在中,,是直線上一點,在直線上,且.(1)如圖1,當D在上,在延長線上時,求證:;(2)如圖2,當為等邊三角形時,是的延長線上一點,在上時,作,求證:;(3)在(2)的條件下,的平分線交于點,連,過點作于點,當,時,求的長度.解析:(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質和外角的性質即可得到結論;(2)過E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質即可得到結論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點睛】本題考查了全等三角形的判定與性質,等腰三角形和直角三角形的性質,三角形的外角的性質,等邊三角形的判定和性質,證明三角形全等是解決問題的關鍵.13.在中,,,是的角平分線,于點.(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點是線段上的一點(不與點重合),以為一邊,在下方作,交延長線于點.求證:;(3)如圖3,點是線段上的點,以為一邊,在的下方作,交延長線于點.直接寫出,與數(shù)量之間的關系.解析:(1)證明見解析;(2)證明見解析;(3)結論:,證明見解析.【解析】【分析】(1)先根據(jù)直角三角形的性質得出,再根據(jù)角平分線的性質可得,然后根據(jù)三角形的判定定理與性質可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見解析),延長ED使得,連接MF,先根據(jù)直角三角形的性質、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質、角的和差得出,然后根據(jù)三角形全等的判定與性質、等量代換即可得證;(3)如圖(見解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質、角的和差得出,然后根據(jù)三角形全等的判定與性質、等量代換即可得證.【詳解】(1)是的角平分線,在和中,是等邊三角形;(2)如圖,延長ED使得,連接MF,是的角平分線,是等邊三角形,即在和中,,即即;(3)結論:,證明過程如下:如圖,延長BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點睛】本題考查了直角三角形的性質、等邊三角形的判定與性質、三角形全等的判定定理與性質等知識點,較難的是題(2)和(3),通過作輔助線,構造一個等邊三角形是解題關鍵.14.已知,在平面直角坐標系中,,,C為AB的中點,P是線段AB上一動點,D是線段OA上一點,且,于E.(1)求的度數(shù);(2)當點P運動時,PE的值是否變化?若變化,說明理由;若不變,請求PE的值.(3)若,求點D的坐標.解析:(1)45°;(2)PE的值不變,PE=4,理由見詳解;(3)D(,0).【解析】【分析】(1)根據(jù),,得△AOB為等腰直角三角形,根據(jù)等腰直角三角形的性質,即可求出∠OAB的度數(shù);(2)根據(jù)等腰直角三角形的性質得到∠AOC=∠BOC=45°,OC⊥AB,再證明△POC≌△DPE,根據(jù)全等三角形的性質得到OC=PE,即可得到答案;(3)證明△POB≌△DPA,得到PA=OB=,DA=PB,進而得OD的值,即可求出點D的坐標.【詳解】(1),,∴OA=OB=,∵∠AOB=90°,∴△AOB為等腰直角三角形,∴∠OAB=45°;(2)PE的值不變,理由如下:∵△AOB為等腰直角三角形,C為AB的中點,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是線段OA上一點,∴點P在線段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC?△DPE(AAS),∴OC=PE,∵OC=AB=××=4,∴PE=4;(3)∵OP=PD,∴∠POD=∠PDO=(180°?45°)÷2=67.5°,∴∠APD=∠PDO?∠A=22.5°,∠BOP=90°?∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,∴△POB≌△DPA(AAS),∴PA=OB=,DA=PB,∴DA=PB=×-=8-,∴OD=OA?DA=-(8-)=,∴點D的坐標為(,0).【點睛】本題主要考查等腰直角三角形的性質,三角形全等的判定與性質定理,圖形與坐標,掌握等腰直角三角形的性質,是解題的關鍵.15.直角三角形中,,直線過點.(1)當時,如圖1,分別過點和作直線于點,直線于點,與是否全等,并說明理由;(2)當,時,如圖2,點與點關于直線對稱,連接,點是上一點,點是上一點,分別過點作直線于點,直線于點,點從點出發(fā),以每秒的速度沿路徑運動,終點為,點從點出發(fā),以每秒的速度沿路徑運動,終點為,點同時開始運動,各自達到相應的終點時停止運動,設運動時間為秒,當為等腰直角三角形時,求的值.解析:(1)全等,理由見解析;(2)t=3.5秒或5秒【解析】【分析】(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;(2)分點F沿C→B路徑運動和點F沿B→C路徑運動兩種情況,根據(jù)等腰三角形的定義列出算式,計算即可;【詳解】解:(1)△ACD與△CBE全等.理由如下:∵AD⊥直線l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)由題意得,AM=t,F(xiàn)N=3t,則CM=8-t,由折疊的性質可知,CF=CB=6,∴CN=6-3t,點N在BC上時,△CMN為等腰直角三角形,當點N沿C→B路徑運動時,由題意得,8-t=3t-6,解得,t=3.5,當點N沿B→C路徑運動時,由題意得,8-t=18-3t,解得,t=5,綜上所述,當t=3.5秒或5秒時,△CMN為等腰直角三角形;【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理,靈活運用分情況討論思想是解題的關鍵.二、選擇題16.已知max表示取三個數(shù)中最大的那個數(shù),例如:當x=9時,max=81.當max時,則x的值為()A. B. C. D.解析:C【解析】【分析】利用max的定義分情況討論即可求解.【詳解】解:當max時,x≥0①=,解得:x=,此時>x>x2,符合題意;②x2=,解得:x=;此時>x>x2,不合題意;③x=,>x>x2,不合題意;故只有x=時,max.故選:C.【點睛】此題主要考查了新定義,正確理解題意分類討論是解題關鍵.17.以下選項中比-2小的是()A.0 B.1 C.-1.5 D.-2.5解析:D【解析】【分析】根據(jù)有理數(shù)比較大小法則:負數(shù)的絕對值越大反而越小可得答案.【詳解】根據(jù)題意可得:,故答案為:D.【點睛】本題考查的是有理數(shù)的大小比較,解題關鍵在于負數(shù)的絕對值越大值越小.18.如圖,將線段AB延長至點C,使,D為線段AC的中點,若BD=2,則線段AB的長為()A.4 B.6 C.8 D.12解析:C【解析】【分析】根據(jù)題意設,則可列出:,解出x值為BC長,進而得出AB的長即可.【詳解】解:根據(jù)題意可得:設,則可列出:解得:,,.故答案為:C.【點睛】本題考查的是線段的中點問題,解題關鍵在于對線段間的倍數(shù)關系的理解,以及通過等量關系列出方程即可.19.如圖,已知在一條直線上,是銳角,則的余角是()A. B.C. D.解析:C【解析】【分析】由圖知:∠1和∠2互補,可得∠1+∠2=180°,即(∠1+∠2)=90°①;而∠1的余角為90°-∠1②,可將①中的90°所表示的(∠1+∠2)代入②中,即可求得結果.【詳解】解:由圖知:∠1+∠2=180°,∴(∠1+∠2)=90°,∴90°-∠1=(∠1+∠2)-∠1=(∠2-∠1).故選:C.【點睛】此題綜合考查余角與補角,難點在于將∠1+∠2=180°進行適當?shù)淖冃?,從而與∠1的余角產(chǎn)生聯(lián)系.20.在,,,這四個數(shù)中,最小的數(shù)是()A. B. C. D.解析:C【解析】【分析】由題意先根據(jù)有理數(shù)的大小比較法則比較大小,再選出選項即可.【詳解】解:∵<<<,∴最小的數(shù)是,故選:C.【點睛】本題考查有理數(shù)的大小比較的應用,主要考查學生的比較能力,注意正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù),兩個負數(shù)比較大小,其絕對值大的反而小.21.計算的結果是()A.-8 B.8 C.2 D.-2解析:C【解析】【分析】根據(jù)有理數(shù)加法法則計算即可得答案.【詳解】=-=2故選:C.【點睛】本題考查有理數(shù)加法,同號兩數(shù)相加,取相同的符號,并把絕對值相加;異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)與0相加,仍得這個數(shù);熟練掌握有理數(shù)加法法則是解題關鍵.22.直線與相交得如圖所示的5個角,其中互為對頂角的是()A.和 B.和 C.和 D.和解析:A【解析】【分析】兩條直線相交后所得的有公共頂點,且兩邊互為反向延長線的兩個角互為對頂角,據(jù)此逐一判斷即可.【詳解】A.和只有一個公共頂點,且兩邊互為反向延長線,是對頂角,符合題意,B.和兩邊不是互為反向延長線,不是對頂角,不符合題意,C.和沒有公共頂點,不是對頂角,不符合題意,D.和沒有公共頂點,不是對頂角,不符合題意,故選:A.【點睛】本題考查對頂角,兩條直線相交后所得的有公共頂點且兩邊互為反向延長線的兩個角叫做對頂角;熟練掌握對頂角的定義是解題關鍵.23.將方程去分母得()A. B.C. D.解析:C【解析】【分析】方程兩邊都乘以2,再去括號即可得解.【詳解】方程兩邊都乘以2得:6-(3x-5)=2x,去括號得:6-3x+5=2x,故選:C.【點睛】本題主要考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數(shù)時,不要漏乘沒有分母的項.24.下列方程是一元一次方程的是()A.=5x B.x2+1=3x C.=y(tǒng)+2 D.2x﹣3y=1解析:A【解析】【分析】只含有一個未知數(shù)(元),并且未知數(shù)的指數(shù)是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常數(shù)且a≠0).據(jù)此可得出正確答案.【詳解】解:A、=5x符合一元一次方程的定義;B、x2+1=3x未知數(shù)x的最高次數(shù)為2,不是一元一次方程;C、=y(tǒng)+2中等號左邊不是整式,不是一元一次方程;D、2x﹣3y=1含有2個未知數(shù),不是一元一次方程;故選:A.【點睛】解題的關鍵是根據(jù)一元一次方程的定義,未知數(shù)x的次數(shù)是1這個條件.此類題目可嚴格按照定義解題.25.將圖中的葉子平移后,可以得到的圖案是()A. B. C. D.解析:A【解析】【分析】根據(jù)平移的特征分析各圖特點,只要符合“圖形的形狀、大小和方向都不改變”即為正確答案.【詳解】解:根據(jù)平移不改變圖形的形狀、大小和方向,將所示的圖案通過平移后可以得到的圖案是A,其它三項皆改變了方向,故錯誤.故選:A.【點睛】本題考查了圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀、大小和方向,學生易混淆圖形的平移,旋轉或翻轉而誤選.26.下列因式分解正確的是()A. B.C. D.解析:D【解析】【分析】分別利用公式法以及提取公因式法對各選項分解因式得出答案.【詳解】解:A、無法分解因式,故此選項錯誤;B、,故此選項錯誤;C、無法分解因式,故此選項錯誤;D、,正確;故選:D.【點睛】此題主要考查了公式法以及提取公因式法分解因式,正確應用乘法公式是解題關鍵.27.已知線段AB=10cm,直線AB上有一點C,且BC=4cm,M是線段AC的中點,則AM的長()A.7cm B.3cm C.3cm或7cm D.7cm或9cm解析:C【解析】【分析】應考慮到A、B、C三點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論