江蘇省重點中學(xué)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第1頁
江蘇省重點中學(xué)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第2頁
江蘇省重點中學(xué)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第3頁
江蘇省重點中學(xué)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第4頁
江蘇省重點中學(xué)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省重點中學(xué)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l與拋物線交于不同的兩點A,B,O為坐標(biāo)原點,若直線的斜率之積為,則直線l恒過定點()A. B.C. D.2.對數(shù)的創(chuàng)始人約翰·奈皮爾(JohnNapier,1550-1617)是蘇格蘭數(shù)學(xué)家.直到18世紀(jì),瑞士數(shù)學(xué)家歐拉發(fā)現(xiàn)了指數(shù)與對數(shù)的互逆關(guān)系,人們才認識到指數(shù)與對數(shù)之間的天然關(guān)系對數(shù)發(fā)現(xiàn)前夕,隨著科技的發(fā)展,天文學(xué)家做了很多的觀察,需要進行很多計算,特別是大數(shù)的連乘,需要花費很長時間.基于這種需求,1594年,奈皮爾運用了獨創(chuàng)的方法構(gòu)造出對數(shù)方法.現(xiàn)在隨著科學(xué)技術(shù)的需要,一些冪的值用數(shù)位表示,譬如,所以的數(shù)位為4.那么的數(shù)位是()(注)A.6 B.7C.606 D.6073.已知,若,則()A. B.C. D.4.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.5.定義“等方差數(shù)列”:如果一個數(shù)列從第二項起,每一項的平方與它的前一項的平方的差都等于同一個常數(shù),那么這個數(shù)列就叫作等方差數(shù)列,這個常數(shù)叫作該數(shù)列的方公差.設(shè)是由正數(shù)組成的等方差數(shù)列,且方公差為4,,則數(shù)列的前24項和為()A. B.3C. D.66.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A B.4C.3 D.27.傾斜角為45°,在y軸上的截距為-1的直線方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=08.已知,則的最小值是()A.3 B.8C.12 D.209.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件10.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.11.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.12.已知定義在區(qū)間上的函數(shù),,若以上兩函數(shù)的圖像有公共點,且在公共點處切線相同,則m的值為()A.2 B.5C.1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.對于下面這個等式我們除了可以用等比數(shù)列的求和公式獲得,還可以用數(shù)學(xué)歸納法對其進行證明“”,那么在應(yīng)用數(shù)學(xué)歸納法證明時,當(dāng)驗證是否成立時,左邊的式子應(yīng)該是_______14.已知橢圓的離心率為.(1)證明:;(2)若點在橢圓的內(nèi)部,過點的直線交橢圓于、兩點,為線段的中點,且.①求直線的方程;②求橢圓的標(biāo)準(zhǔn)方程.15.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A、B的距離之比為定值(且)的點的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,,,點滿足,則點P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.16.一個質(zhì)地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍,綠},設(shè)事件{紅,黃},事件{紅,藍},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨立事件;③F與G是對立事件;④F與G是獨立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點,,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.18.(12分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.19.(12分)設(shè)函數(shù).(1)若在點處的切線為,求a,b的值;(2)求的單調(diào)區(qū)間.20.(12分)已知為坐標(biāo)原點,橢圓的左右焦點分別為,,為橢圓的上頂點,以為圓心且過的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線交橢圓于兩點.(?。┤糁本€的斜率等于,求面積的最大值;(ⅱ)若,點在上,.證明:存在定點,使得為定值.21.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由22.(10分)已知橢圓,直線.(1)若直線與橢圓相切,求實數(shù)的值;(2)若直線與橢圓相交于A、兩點,為線段的中點,為坐標(biāo)原點,且,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進而得到的值,將直線的斜率之積為,用A,B點坐標(biāo)表示出來,結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時,,即直線l恒過定點,故選:A.2、D【解析】根據(jù)已知條件,設(shè),則,求出t的范圍,即可判斷其數(shù)位.【詳解】設(shè),則,則,則,,的數(shù)位是607.故選:D.3、B【解析】先求出的坐標(biāo),然后由可得,再根據(jù)向量數(shù)量積的坐標(biāo)運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B4、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)5、C【解析】根據(jù)等方差數(shù)列的定義,結(jié)合等差數(shù)列的通項公式,運用裂項相消法進行求解即可.【詳解】因為是方公差為4的等方差數(shù)列,所以,,∴,∴,∴,故選:C6、C【解析】化簡復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由為純虛數(shù),∴,解得:,則,故選:C7、B【解析】由題意,,所以,即,故選B8、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,即當(dāng)時取等號,故選:A9、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當(dāng)時,利用正弦函數(shù)的單調(diào)性知;當(dāng)時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.10、B【解析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎(chǔ)題.11、D【解析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得故選:【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題12、C【解析】設(shè)兩曲線與公共點為,分別求得函數(shù)的導(dǎo)數(shù),根據(jù)兩函數(shù)的圖像有公共點,且在公共點處切線相同,列出等式,求得公共點的坐標(biāo),代入函數(shù),即可求解.【詳解】根據(jù)題意,設(shè)兩曲線與公共點為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因為兩函數(shù)的圖像有公共點,且在公共點處切線相同,所以,解得或(舍去),又由,即公共點的坐標(biāo)為,將點代入,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知條件,結(jié)合數(shù)學(xué)歸納法的定義,即可求解.【詳解】當(dāng),,故此時式子左邊=.故答案為:.14、(1)證明見解析;(2)①;②.【解析】(1)由可證得結(jié)論成立;(2)①設(shè)點、,利用點差法可求得直線的斜率,利用點斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由可得出,利用平面向量數(shù)量積的坐標(biāo)運算可得出關(guān)于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當(dāng)在橢圓的內(nèi)部時,,可得.設(shè)點、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.15、①.②.【解析】設(shè)點P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對化簡,結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點坐標(biāo)為,則由,得,化簡得,即.因為,所以因為點P在圓上,故所以,故的最小值為.故答案為:,16、②③【解析】由對立和互斥事件的定義判斷①③;由獨立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨立事件;,,則F與G不是獨立事件故答案為:②③三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因為,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(2)取BC中點O,由(1)得:平面BCGF,,以O(shè)為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,利用空間向量求二面角,即可求出結(jié)果.【小問1詳解】證明:(1)在中,由正弦定理知:解得因為,所以又因為,所以所以又因為,所以直線平面ABC又因為平面BCGF所以平面平面BCGF【小問2詳解】解:取BC中點O,連結(jié)OA,OH,由(1)得:平面BCGF,則以O(shè)為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系在中,則,,平面ABC的一個法向量為設(shè)平面ACH的一個法向量為因為,所以,取,則設(shè)平面APD與平面PDF夾角為,所以.18、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點作坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,0,,,2,,,0,,,0,,設(shè)平面的一個法向量為,又,則,則可取,又,設(shè)直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因為所以點到平面的距離為,點到平面的距離為19、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導(dǎo),切點在曲線,切點在切線,切點處的導(dǎo)數(shù)值為切線斜率.(2)第一步定義域,第二步求導(dǎo),第三步令導(dǎo)數(shù)大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當(dāng)時,在上恒成立,所以在單調(diào)遞減;②當(dāng)時,令,解得:,列表得:x-0+單調(diào)遞減極小值單調(diào)遞增所以,時,的遞減區(qū)間為,單增區(qū)間為.綜上所述:當(dāng)時,在單調(diào)遞減;當(dāng)時,的遞減區(qū)間為,單增區(qū)間為.【點睛】導(dǎo)函數(shù)中得切線問題第一步求導(dǎo),第二步列切點在曲線,切點在切線,切點處的導(dǎo)數(shù)值為切線斜率這三個方程,可解切線相關(guān)問題.20、(1);(2)(?。?;(ⅱ).【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)(?。┰O(shè)直線的方程為:,,聯(lián)立直線方程和橢圓方程,利用韋達定理、弦長公式可求面積表達式,利用基本不等式可求面積的最大值.(ⅱ)利用韋達定理化簡可得,從而可得的軌跡為圓,故可證存在定點,使得為定值.【詳解】(1)由題意知:,,又,則以為圓心且過的圓的半徑為,故,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)(ⅰ)設(shè)直線的方程為:,將代入得:,所以且,故.又,點到直線的距離,所以,等號當(dāng)僅當(dāng)時取,即當(dāng)時,的面積取最大值為.(ⅱ)顯然直線的斜率一定存在,設(shè)直線的方程為:,,由(?。┲核裕?,解得,,直線過定點或,所以D在以O(shè)Z為直徑的圓上,該圓的圓心為或,半徑等于,所以存在定點或,使得為定值.【點睛】方法點睛:求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.直線與圓錐曲線的位置關(guān)系中的定點、定值、最值問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個的交點橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點、定值、最值問題.21、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項公式;(2)結(jié)合通項公式裂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論