福建省龍巖市龍巖第一中學2026屆高二數學第一學期期末復習檢測試題含解析_第1頁
福建省龍巖市龍巖第一中學2026屆高二數學第一學期期末復習檢測試題含解析_第2頁
福建省龍巖市龍巖第一中學2026屆高二數學第一學期期末復習檢測試題含解析_第3頁
福建省龍巖市龍巖第一中學2026屆高二數學第一學期期末復習檢測試題含解析_第4頁
福建省龍巖市龍巖第一中學2026屆高二數學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省龍巖市龍巖第一中學2026屆高二數學第一學期期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設斜率為2的直線l過拋物線()的焦點F,且和y軸交于點A,若(O為坐標原點)的面積為4,則拋物線方程為()A. B.C. D.2.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,3.在平面直角坐標系中,線段的兩端點,分別在軸正半軸和軸正半軸上滑動,若圓上存在點是線段的中點,則線段長度的最小值為()A.4 B.6C.8 D.104.已知橢圓的左、右焦點分別為,過的直線與橢圓C相交P,Q兩點,若,且,則橢圓C的離心率為()A. B.C. D.5.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負抵消,實現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構成的,其結構式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構成的不同二氧化碳分子共有()A.種 B.種C.種 D.種6.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.17.已知數列滿足,則()A.32 B.C.1320 D.8.設函數的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是()A. B.C. D.9.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.10.直線與圓的位置關系是()A.相交 B.相切C.相離 D.都有可能11.雙曲線型自然通風塔外形是雙曲線的一部分繞其虛軸旋轉所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.12.如圖,點A的坐標為,點C的坐標為,函數,若在矩形內隨機取一點,則此點取自陰影部分的概率等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的左焦點到直線的距離為________.14.已知數列的各項均為正數,其前項和滿足,則__________;記表示不超過的最大整數,例如,若,設的前項和為,則__________15.雙曲線的離心率為__________16.已知平面的一個法向量為,點為內一點,則點到平面的距離為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的長軸長為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標原點,斜率為k的直線l經過點,已知直線l與橢圓C相交于點A,B,求面積的最大值18.(12分)已知函數.(1)當時,求的極值;(2)當時,,求a的取值范圍.19.(12分)2022北京冬奧會即將開始,北京某大學鼓勵學生積極參與志愿者的選拔.某學院有6名學生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負責滑雪項目服務崗位,那么現(xiàn)將6人分為A、B兩組進行滑雪項目相關知識及志愿者服務知識競賽,共賽10局.A、B兩組分數(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學角度看,應選擇哪個組更合適?理由是什么?20.(12分)設雙曲線的左、右焦點分別為,,且,一條漸近線的傾斜角為60°(1)求雙曲線C的標準方程和離心率;(2)求分別以,為左、右頂點,短軸長等于雙曲線虛軸長的橢圓的標準方程21.(12分)已知拋物線的焦點為F,點在C上(1)求p的值及F的坐標;(2)過F且斜率為的直線l與C交于A,B兩點(A在第一象限),求22.(10分)已知,,(1)若,為真命題,為假命題,求實數x的取值范圍;(2)若是的充分不必要條件,求實數m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據拋物線的方程寫出焦點坐標,求出直線的方程、點的坐標,最后根據三角形面積公式進行求解即可.【詳解】拋物線的焦點的坐標為,所以直線的方程為:,令,解得,因此點的坐標為:,因為面積為4,所以有,即,,因此拋物線的方程為.故選:B.2、D【解析】根據特稱命題否定的方法求解,改變量詞,否定結論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.3、C【解析】首先求點的軌跡,將問題轉化為兩圓有交點,即根據兩圓的位置關系,求參數的取值范圍.【詳解】設,,的中點為,則,故點的軌跡是以原點為圓心,為半徑的圓,問題轉化為圓與圓有交點,所以,,即,解得:,所以線段長度的最小值為.故選:C4、B【解析】設,由橢圓的定義及,結合勾股定理求參數m,進而由勾股定理構造橢圓參數的齊次方程求離心率.【詳解】設,橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.5、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數,利用分類加法計數原理可得結果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數原理可知,由上述同位素可構成的不同二氧化碳分子共有種.故選:C.6、A【解析】分截距都為零和都不為零討論即可.【詳解】當截距都為零時,直線過原點,;當截距不為零時,,.綜上:或.故選:A.7、A【解析】先令,求出,再當時,由,可得,然后兩式相比,求出,從而可求出,進而可求得答案【詳解】當時,,當時,由,可得,兩式相除可得,所以,所以,故選:A8、D【解析】由題意得當時,,根據題意作出函數的部分圖象,再結合圖象即可求出答案【詳解】解:當時,,又,∴當時,,∴在上單調遞增,在上單調遞減,且;又,則函數圖象每往右平移兩個單位,縱坐標變?yōu)樵瓉淼谋叮鞒銎浯笾聢D象得,當時,由得,或,由圖可知,若對任意,都有,則,故選:D【點睛】本題主要考查函數的圖象變換,考查數形結合思想,屬于中檔題9、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內,又圓的圓心為則,此時直線過圓心;當直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.10、A【解析】求出圓心到直線的距離,然后與圓的半徑進行大小比較即可求解.【詳解】解:圓的圓心,,因為圓心到直線的距離,所以直線與圓的位置關系是相交,故選:A.11、A【解析】以的中點О為坐標原點,建立平面直角坐標系,設雙曲線的方程為,設,,代入雙曲線的方程,求得,得到,進而求得雙曲線的離心率.【詳解】以的中點О為坐標原點,建立如圖所示的平面直角坐標系,則,設雙曲線的方程為,則,可設,,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷12、A【解析】分別由矩形面積公式與微積分幾何意義計算陰影部分和矩形部分的面積,最后由幾何概型概率計算公式計算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點取自陰影部分的概率等于,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據雙曲線方程求得左焦點的坐標,利用點到直線的距離公式即可求得結果.【詳解】因為雙曲線的方程為,設其左焦點的坐標為,故可得,解得,故左焦點的坐標為,則其到直線的距離.故答案為:.14、①.;②.60.【解析】先根據并結合等差數列的定義求出;然后討論n的取值范圍,討論出分別取1,2,3,4,5的情況,進而求出.【詳解】由題意,,n=1時,,滿足,時,,于是,,因為,所以.所以,是1為首項,2為公差的等差數列,所以.若,即時,,若,則時,,若,則時,,若,則時,,若,則或22時,,于是,.故答案為:2n-1;60.15、【解析】∵雙曲線的方程為∴,∴∴故答案為16、1【解析】利用空間向量求點到平面的距離即可.【詳解】,,∴則點P到平面的距離為.故答案為:1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)待定系數法求橢圓的方程;(2)設直線的方程為,,,用“設而不求法”表示出三角形OAB的面積.令轉化為關于t的函數,利用函數求最值.【詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設直線的方程為,,由,得,則,點到直線的距離為,.令,則..∵在單調遞增,∴時.有最小值3.此時有最大值.∴面積的最大值為.18、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對函數求導,結合導數可求函數單調區(qū)間,即可得解;(2)構造函數,將不等式的恒成立轉化為函數的最值問題,結合導數與單調性及函數的性質對進行分類討論,其中當和時易判斷函數的單調性以及最小值,而當時,的最小值與0進一步判斷【小問1詳解】當時,的定義域為,.當時,,當時,,所以在上為增函數,在上為減函數.故有極大值,沒有極小值.【小問2詳解】當時,恒成立等價于對于任意恒成立.令,則.若,則,所以在上單調遞減,所以,符合題意.若,所以在上單調遞減,,符合題意.若,當時,,當時,,所以在上單調遞減,在上單調遞增,所以,不合題意.綜上可知,a的取值范圍為.【點睛】關鍵點點睛:本題考查了不等式恒成立問題,其關鍵是構造函數,通過討論參數在不同取值范圍時函數的單調性,求出函數的最值,解出參數的范圍.必要時二次求導.19、(1)(2)答案見詳解【解析】(1):把4名男生和2名女生編號后用列舉法寫出任選2名的所有基本事件,同時可得出,兩人是一男一女的基本事件,計數后可計算概率;(2):求出兩組數據的均值和方差,比較可得【小問1詳解】設4名男生分別用A,B,C,D表示:2名女生分別用1,2表示.基本事件為:,,,,,,,,,,,,共15種,所以所求概率為;【小問2詳解】A組數據的平均數,B組數據的平均數,A組數據的方差,B組數據的方差,所以選擇A隊.理由:A、B兩隊平均數相同,且,A組成績波動小20、(1),2(2)【解析】(1)結合,聯(lián)立即得解;(2)由題意,即得解.【詳解】(1)由題意,又解得:故雙曲線C的標準方程為:,離心率為(2)由題意橢圓的焦點在軸上,設橢圓方程為故即橢圓方程為:21、(1),(2)4【解析】(1)將M坐標代入方程即可;(2)聯(lián)立直線l與拋物線方程得到A、B的橫坐標,再利用焦半徑公式求出即可.【小問1詳解】將代入,得,解得,所以【小問2詳解】由(1)得拋物線方程為,直線l的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論