2026屆吉林一中 高二上數(shù)學期末調(diào)研試題含解析_第1頁
2026屆吉林一中 高二上數(shù)學期末調(diào)研試題含解析_第2頁
2026屆吉林一中 高二上數(shù)學期末調(diào)研試題含解析_第3頁
2026屆吉林一中 高二上數(shù)學期末調(diào)研試題含解析_第4頁
2026屆吉林一中 高二上數(shù)學期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆吉林一中高二上數(shù)學期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線(,)的一條漸近線經(jīng)過點,則雙曲線的離心率為()A. B.C. D.22.復數(shù)的虛部為()A. B.C. D.3.已知奇函數(shù)是定義在R上的可導函數(shù),的導函數(shù)為,當時,有,則不等式的解集為()A. B.C. D.4.已知遞增等比數(shù)列的前n項和為,,且,則與的關系是()A. B.C. D.5.過點且垂直于直線的直線方程為()A. B.C. D.6.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.11347.已知,,則()A. B.C. D.8.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側面與底面所成的二面角為30°,側棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側面積為平方米 D.側棱與底面所成角的正弦值為9.設等差數(shù)列的前n項和為.若,則()A.19 B.21C.23 D.3810.已知函數(shù)的圖象如圖所示,則其導函數(shù)的圖象大致形狀為()A. B.C. D.11.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為12.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,O為坐標原點,M的準線為l且與x軸相交于點B,A為M上的一點,直線AO與直線l相交于C點,若,,則M的標準方程為______________.14.設函數(shù),,對任意的,都有成立,則實數(shù)的取值范圍是______15.從編號為01,02,…,60的60個產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中的前兩個編號分別為02,08(編號按從小到大的順序排列),則樣本中最大的編號是_________16.若函數(shù),則_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應弦長最短時的直線方程18.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀19.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.20.(12分)如圖,水平桌面上放置一個棱長為4的正方體的水槽,水面高度恰為正方體棱長的一半,在該正方體側面有一個小孔(小孔的大小忽略不計)E,E點到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當水恰好流出時,側面與桌面所成的角的大小.21.(12分)已知圓,直線(1)判斷直線與圓的位置關系;(2)若直線與圓交于不同兩點,且,求直線的方程22.(10分)已知圓(1)若一直線被圓C所截得的弦的中點為,求該直線的方程;(2)設直線與圓C交于A,B兩點,把的面積S表示為m的函數(shù),并求S的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.2、D【解析】直接根據(jù).復數(shù)的乘法運算結合復數(shù)虛部的定義即可得出答案【詳解】解:,所以復數(shù)的虛部為.故選:D.3、B【解析】根據(jù)給定的不等式構造函數(shù),再探討函數(shù)的性質(zhì),借助性質(zhì)解不等式作答.【詳解】依題意,令,因是R上的奇函數(shù),則,即是R上的奇函數(shù),當時,,則有在單調(diào)遞增,又函數(shù)在R上連續(xù),因此,函數(shù)在R上單調(diào)遞增,不等式,于是得,解得,所以原不等式的解集是.故選:B4、D【解析】設等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D5、A【詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點睛】本題主要考查直線方程的求法,屬基礎題.6、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.7、C【解析】利用空間向量的坐標運算即可求解.【詳解】因為,,所以,故選:C.8、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側面與底面所成,設正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質(zhì),可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側面積為,故選項C正確.由題意為側棱與底面所成角,則,故選項D不正確.故選:D9、A【解析】由已知及等差數(shù)列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設等差數(shù)列的公差為d,由已知,得,解得,所以.故選:A10、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結合導數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.11、D【解析】根據(jù)已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D12、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當時,不滿足,故,即輸出的的值為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用相似關系計算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結果.【詳解】因為,,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標準方程為.故答案為:.14、【解析】首先求得函數(shù)在區(qū)間上的最大值,然后分離參數(shù),利用導函數(shù)求最值即可確定實數(shù)的取值范圍.【詳解】∵在上恒成立,∴當時,取最大值1,∵對任意的,都有成立,∴在上恒成立,即在上恒成立,令,則,,∵在上恒成立,∴在上為減函數(shù),∵當時,,故當時,取最大值1,故,故答案為【點睛】本題考查的知識點是函數(shù)恒成立問題,利用導數(shù)研究函數(shù)的單調(diào)性,利用導數(shù)研究函數(shù)的最值,難度中檔15、56【解析】根據(jù)系統(tǒng)抽樣的定義得到編號之間的關系,即可得到結論.【詳解】由已知樣本中的前兩個編號分別為02,08,則樣本數(shù)據(jù)間距為,則樣本容量為,則對應的號碼數(shù),則當時,x取得最大值為56故答案為:5616、1【解析】先對函數(shù)求導,然后令可求出的值【詳解】因為,所以,則,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點,即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時求解.【小問1詳解】解:,所以,令,所以直線經(jīng)過定點,圓可變形為,因為,所以定點在圓內(nèi),所以直線和圓C相交,有兩個交點;【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當且僅當時,d的最大值為,所以最短弦長為,直線的方程為.18、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形19、(1)(2)或【解析】(1)結合拋物線的定義求得,由此求得拋物線的方程.(2)設,根據(jù)三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設,則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.20、(1)證明見解析(2)【解析】(1)由水的體積得出,進而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點作,交于,由四邊形是平行四邊形,得出側面與桌面所成的角即側面與水面所成的角,再由直角三角形的邊角關系得出其夾角.【小問1詳解】由題意知,水的體積為,如圖所示,設正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問2詳解】在平面內(nèi),過點作,交于,則四邊形是平行四邊形,,,側面與桌面所成的角即側面與水面所成的角,即側面與平面所成的角,即為所求,而,在中,,側面與桌面所成角的為21、(1)直線與圓相交;(2)或【解析】(1)通過比較圓心到直線的距離與半徑的關系,不難發(fā)現(xiàn)直線和圓相交.(2)根據(jù)垂徑定理,得到圓心與直線的距離,進而列方程求解即可試題解析:(1)將圓方程化為標準方程,所以圓的圓心,半徑,圓心到直線的距離,因此直線與圓相交(2)設圓心到直線的距離為,則,又,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論