連云港市灌南縣2025年高考仿真卷數(shù)學(xué)試題含解析_第1頁
連云港市灌南縣2025年高考仿真卷數(shù)學(xué)試題含解析_第2頁
連云港市灌南縣2025年高考仿真卷數(shù)學(xué)試題含解析_第3頁
連云港市灌南縣2025年高考仿真卷數(shù)學(xué)試題含解析_第4頁
連云港市灌南縣2025年高考仿真卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

連云港市灌南縣2025年高考仿真卷數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A. B. C. D.2.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.5.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.6.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.某高中高三(1)班為了沖刺高考,營造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進(jìn)行了問話,得到回復(fù)如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細(xì)節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李8.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.9.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對稱軸C.點是函數(shù)圖象的一個對稱中心D.將函數(shù)圖象向左平移需個單位,可得到的圖象10.已知函數(shù),若關(guān)于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.811.若,則“”的一個充分不必要條件是A. B.C.且 D.或12.設(shè),集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.14.在的展開式中,的系數(shù)等于__.15.已知不等式組所表示的平面區(qū)域為,則區(qū)域的外接圓的面積為______.16.已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)己知點,分別是橢圓的上頂點和左焦點,若與圓相切于點,且點是線段靠近點的三等分點.求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個公共點,且點在第二象限,過坐標(biāo)原點且與垂直的直線與圓相交于,兩點,求面積的取值范圍.18.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)已知函數(shù)(1)當(dāng)時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.20.(12分)設(shè)拋物線的焦點為,準(zhǔn)線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.(1)求的值及該圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.21.(12分)已知函數(shù).(Ⅰ)已知是的一個極值點,求曲線在處的切線方程(Ⅱ)討論關(guān)于的方程根的個數(shù).22.(10分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.2.B【解析】

求出復(fù)數(shù),得出其對應(yīng)點的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點坐標(biāo)為,在第二象限.故選:B.本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.3.B【解析】

轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡,即得解【詳解】復(fù)數(shù)滿足:所以故選:B本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.4.B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.5.C【解析】

設(shè)線段的中點為,判斷出點的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6.D【解析】

求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標(biāo)為,該點位于第四象限.故選:D.本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.7.D【解析】

根據(jù)題意,分別假設(shè)一個正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應(yīng)“入班即靜”,而否定小董說法后得出:小王對應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應(yīng)“天道酬勤”,否定小李的說法后得出:小李對應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對應(yīng)“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.本題考查推理證明的實際應(yīng)用.8.A【解析】

作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.本題考查了四棱錐的三視圖的有關(guān)計算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.9.D【解析】

利用輔助角公式化簡函數(shù)得到,再逐項判斷正誤得到答案.【詳解】A選項,函數(shù)先增后減,錯誤B選項,不是函數(shù)對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D本題考查了三角函數(shù)的單調(diào)性,對稱軸,對稱中心,平移,意在考查學(xué)生對于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡三角函數(shù)是解題的關(guān)鍵.10.D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時,,由于關(guān)于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時,,則不滿足題意;當(dāng)時,當(dāng)時,,沒有整數(shù)解當(dāng)時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.11.C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.12.B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B本題主要考查集合的化簡和運算,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關(guān)鍵在于恰當(dāng)?shù)貙ο蛄窟M(jìn)行轉(zhuǎn)換,便于計算解題.14.7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7本題主要考查二項式定理的應(yīng)用,屬基礎(chǔ)題.15.【解析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.16.【解析】

由圓柱外接球的性質(zhì),即可求得結(jié)果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設(shè)圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.本題考查由圓柱的外接球的性質(zhì)求圓柱底面半徑,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因為直線與橢圓相切于點,,解得,,因為點在第二象限,所以,,所以,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因為直線與橢圓相切于點,所以,即,解得,,即點的坐標(biāo)為,因為點在第二象限,所以,,所以,所以點的坐標(biāo)為,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時,有最大值,所以,即面積的取值范圍為.本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.18.(1);(2).【解析】

(1)根據(jù)等比中項性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項為,公比為的等比數(shù)列,.本題考查等差數(shù)列通項公式的求解、分組求和法求解數(shù)列的前項和的問題;關(guān)鍵是能夠根據(jù)通項公式證得數(shù)列為等比數(shù)列,進(jìn)而采用分組求和法,結(jié)合等差和等比數(shù)列求和公式求得結(jié)果.19.(1)證明見解析(2)【解析】

(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當(dāng)時,,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時,所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時,,使得,即,但當(dāng)時,即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.20.(1),圓的方程為:.(2)答案見解析【解析】

(1)根據(jù)題意,可知點的坐標(biāo)為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡解得,進(jìn)而求得點的坐標(biāo)為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點的坐標(biāo)為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標(biāo)為.所以,,.故.本題考查拋物線的標(biāo)準(zhǔn)方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點坐標(biāo)以及向量的數(shù)量積,考查解題能力和計算能力.21.(Ⅰ);(Ⅱ)見解析【解析】

(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用x=2是f(x)的一個極值點,得f'(2)=0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構(gòu)造函數(shù)求出函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合轉(zhuǎn)化為圖象交點個數(shù)進(jìn)行求解即可.【詳解】(Ⅰ)因為,則,因為是的一個極值點,所以,即,所以,因為,,則直線方程為,即;(Ⅱ)因為,所以,所以,設(shè),則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設(shè),則,所以在上是減函數(shù),上是增函數(shù),所以,所以當(dāng)時,,函數(shù)在是減函數(shù),當(dāng)時,,函數(shù)在是增函數(shù),因為時,,,,所以當(dāng)時,方程無實數(shù)根,當(dāng)時,方程有兩個不相等實數(shù)根,當(dāng)或時,方程有1個實根.本題考查函數(shù)中由極值點求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論