山西省陽泉市第十一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
山西省陽泉市第十一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
山西省陽泉市第十一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
山西省陽泉市第十一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
山西省陽泉市第十一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山西省陽泉市第十一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)動(dòng)圓與定圓相外切,且與直線相切,則動(dòng)圓圓心的軌跡方程為()A. B.C. D.2.已知拋物線上的點(diǎn)到該拋物線焦點(diǎn)的距離為,則拋物線的方程是()A. B.C. D.3.2021年小林大學(xué)畢業(yè)后,9月1日開始工作,他決定給自己開一張儲(chǔ)蓄銀行卡,每月的10號存錢至該銀行卡(假設(shè)當(dāng)天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個(gè)月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達(dá)到1萬元的時(shí)間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日4.已知,,則等于()A.2 B.C. D.5.已知公比不為1的等比數(shù)列,其前n項(xiàng)和為,,則()A.2 B.4C.5 D.256.若拋物線的焦點(diǎn)為,則其標(biāo)準(zhǔn)方程為()A. B.C. D.7.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形8.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.9.已知下列四個(gè)命題,其中正確的是()A. B.C. D.10.橢圓與雙曲線有公共的焦點(diǎn)、,與在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.11.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.1012.已知,滿足,則的最小值為()A.5 B.-3C.-5 D.-9二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為_______14.如圖,設(shè)正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______15.若橢圓和圓(c為橢圓的半焦距)有四個(gè)不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.16.給出下列命題:①若兩條不同的直線同時(shí)垂直于第三條直線,則這兩條直線互相平行;②若兩個(gè)不同的平面同時(shí)垂直于同一條直線,則這兩個(gè)平面互相平行;③若兩條不同的直線同時(shí)垂直于同一個(gè)平面,則這兩條直線互相平行;④若兩個(gè)不同的平面同時(shí)垂直于第三個(gè)平面,則這兩個(gè)平面互相垂直.其中所有正確命題的序號為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)同時(shí)擲兩顆質(zhì)地均勻的骰子(六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點(diǎn)數(shù)相等的概率;(2)求兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的整數(shù)倍的概率18.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點(diǎn),使得二面角的余弦值?若存在,指出點(diǎn)的位置;若不存在,說明理由.19.(12分)已知橢圓C對稱中心在原點(diǎn),對稱軸為坐標(biāo)軸,且,兩點(diǎn)(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負(fù)半軸、y軸負(fù)半軸的交點(diǎn),P為橢圓上在第一象限內(nèi)一點(diǎn),直線PM與y軸交于點(diǎn)S,直線PN與x軸交于點(diǎn)T,求證:四邊形MSTN的面積為定值20.(12分)已知函數(shù)(其中a常數(shù))(1)求的單調(diào)遞增區(qū)間;(2)若,時(shí),的最小值為4,求a的值21.(12分)已知橢圓C:的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2.(1)橢圓C的方程;(2)設(shè)直線l:交橢圓C于A,B兩點(diǎn),且,求m的值.22.(10分)設(shè)數(shù)列的前項(xiàng)和,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前項(xiàng)和,求使成立的的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)點(diǎn)到直線的距離與點(diǎn)到點(diǎn)之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動(dòng)圓圓心P點(diǎn)坐標(biāo)為(x,y),動(dòng)圓的半徑為r,d為動(dòng)圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動(dòng)圓圓心軌跡方程為故選:D2、B【解析】由拋物線知識得出準(zhǔn)線方程,再由點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【詳解】由題意知,則準(zhǔn)線為,點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.3、C【解析】分析可得每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為,分析首次達(dá)到1萬元的值,即得解【詳解】依題意可知,小林從第一個(gè)月開始,每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為.因?yàn)闉樵龊瘮?shù),且,所以第14個(gè)月的10號存完錢后,他這張銀行卡賬上存錢總額首次達(dá)到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達(dá)到1萬元.故選:C4、D【解析】利用兩角和的正切公式計(jì)算出正確答案.【詳解】.故選:D5、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)求得,從而可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,則,所以,則.故選:B.6、D【解析】由題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,再利用焦點(diǎn)為建立,解方程即可.【詳解】由題意,設(shè)拋物線標(biāo)準(zhǔn)方程為,所以,解得,所以拋物線標(biāo)準(zhǔn)方程為.故選:D7、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C8、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導(dǎo)數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.9、B【解析】根據(jù)基本初等函數(shù)的求導(dǎo)公式和求導(dǎo)法則即可求解判斷.【詳解】,故A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤.故選:B.10、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實(shí)軸長為,因?yàn)榕c在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.11、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計(jì)算即可得出離心率.【詳解】雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A12、D【解析】作出可行域,作出目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解【詳解】解:作出可行域,如圖內(nèi)部(含邊界),作直線,在中,,當(dāng)直線向下平移時(shí),增大,因此把直線向上平移,當(dāng)直線過點(diǎn)時(shí),故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計(jì)算函數(shù)最小值得到答案.【詳解】當(dāng)時(shí),不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當(dāng)時(shí),,當(dāng)時(shí),,所以,所以故答案為:14、##【解析】建立空間直角坐標(biāo)系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標(biāo)系,則、、、,所以,,設(shè)直線與所成角為,則,因?yàn)?,所以;故答案為?5、【解析】當(dāng)圓的直徑介于橢圓長軸和短軸長度范圍之間時(shí),橢圓和圓有四個(gè)不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個(gè)焦點(diǎn),故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點(diǎn)睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.16、②③【解析】由垂直于同一直線的兩直線的位置關(guān)系判斷①;由直線與平面垂直的性質(zhì)判斷②③;由空間中平面與平面的位置關(guān)系判斷④【詳解】①若兩條不同的直線垂直于第三條直線,則這兩條直線有三種位置關(guān)系:平行、相交或異面,故錯(cuò)誤;②根據(jù)線面垂直的性質(zhì)知,若兩個(gè)不同的平面垂直于一條直線,則這兩個(gè)平面互相平行,故正確;③由線面垂直的性質(zhì)知:若兩條不同的直線同時(shí)垂直于同一個(gè)平面,則這兩條直線互相平行,故正確④若兩個(gè)不同的平面同時(shí)垂直于第三個(gè)平面,這兩個(gè)平面相交或平行,故錯(cuò)誤.其中所有正確命題的序號為②③故答案為:②③三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出同時(shí)擲兩顆骰子的基本事件數(shù)、及骰子向上的點(diǎn)數(shù)相等的基本事件數(shù),應(yīng)用古典概型的概率求法,求概率即可.(2)列舉出兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的倍數(shù)的基本事件,應(yīng)用古典概型的概率求法,求概率即可.【小問1詳解】同時(shí)擲兩顆骰子包括的基本事件共種,擲兩顆骰子向上的點(diǎn)數(shù)相等包括的基本事件為6種,故所求的概率為;【小問2詳解】兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的倍數(shù)時(shí),用坐標(biāo)記為,,,,,,,,,,,,,,,,共包括16個(gè)基本事件,故兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的倍數(shù)有的概率為.18、(1);(2)存在,為上靠近點(diǎn)的三等分點(diǎn)【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個(gè)法向量,計(jì)算即可求解;(2)假設(shè)線段上存在點(diǎn)符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個(gè)法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點(diǎn),使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點(diǎn)滿足條件,為上靠近點(diǎn)的三等分點(diǎn)【點(diǎn)睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.19、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標(biāo),再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點(diǎn)坐標(biāo)滿足,即,直線PM:,可得,直線PN:,可得,.20、(1);(2).【解析】(1)利用三角恒等變換思想化簡函數(shù)解析式為,然后解不等式,可得答案;(2)由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的最小值,進(jìn)而可求得實(shí)數(shù)的值.【詳解】(1),令,解得.所以,函數(shù)的單調(diào)遞增區(qū)間為;(2)當(dāng)時(shí),,所以,所以,解得.21、(1);(2).【解析】(1)通過短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離可知,進(jìn)而利用離心率的值計(jì)算即得結(jié)論;(2)設(shè),聯(lián)立直線與橢圓方程,消去y得到關(guān)于x的一元二次方程,得到根與系數(shù)的關(guān)系,再利用弦長公式即可得出.【詳解】解:(1)由題意可得,解得:,,橢圓C的方程為;(2)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論