山東省陽谷縣第二中學2026屆數(shù)學高一上期末檢測試題含解析_第1頁
山東省陽谷縣第二中學2026屆數(shù)學高一上期末檢測試題含解析_第2頁
山東省陽谷縣第二中學2026屆數(shù)學高一上期末檢測試題含解析_第3頁
山東省陽谷縣第二中學2026屆數(shù)學高一上期末檢測試題含解析_第4頁
山東省陽谷縣第二中學2026屆數(shù)學高一上期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省陽谷縣第二中學2026屆數(shù)學高一上期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在線段上任取一點,則此點坐標大于1的概率是()A. B.C. D.2.為得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向右平移個長度單位3.已知函數(shù)的圖象與直線有三個不同的交點,則的取值范圍是()A. B.C. D.4.已知命題:角為第二或第三象限角,命題:,命題是命題的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.已知函數(shù),則的零點所在區(qū)間為A. B.C. D.6.下列函數(shù)中,與函數(shù)是同一函數(shù)的是()A. B.C. D.7.函數(shù)滿足:,已知函數(shù)與的圖象共有4個交點,交點坐標分別為,,,,則:A. B.C. D.8.在我國古代數(shù)學名著《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑ABCD中,AB⊥平面BCD,且AB=BC=CD,則異面直線AC與BD所成角的余弦值為()A. B.-C.2 D.9.設(shè)是定義在R上的奇函數(shù),當時,(b為常數(shù)),則的值為()A.﹣6 B.﹣4C.4 D.610.已知函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.銳角中,分別為內(nèi)角的對邊,已知,,,則的面積為__________12.寫出一個值域為,在區(qū)間上單調(diào)遞增的函數(shù)______13.已知,若,使得,若的最大值為,最小值為,則__________14.在區(qū)間上隨機地取一個實數(shù),若實數(shù)滿足的概率為,則________.15.若函數(shù)在區(qū)間[2,3]上的最大值比最小值大,則__________.16.已知冪函數(shù)的圖象關(guān)于軸對稱,且在上單調(diào)遞減,則滿足的的取值范圍為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若且的最小值為,求不等式的解集;(2)若當時,不等式恒成立,求實數(shù)的取值范圍.18.已知函數(shù),將函數(shù)的圖象向左平移個單位,再向上平移2個單位,得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)求函數(shù)在上的最大值和最小值.19.已知是定義在上的奇函數(shù),,當時的解析式為.(1)寫出在上的解析式;(2)求在上的最值.20.已知.(1)若,且,求的值.(2)若,且,求的值.21.已知全集,集合,集合(1)求集合及;(2)若集合,且,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】設(shè)“所取點坐標大于1”為事件A,則滿足A的區(qū)間為[1,3]根據(jù)幾何概率的計算公式可得,故選B.點睛:(1)當試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標系中表示所需要的區(qū)域(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率2、A【解析】先將變形為,即可得出結(jié)果.詳解】,只需將函數(shù)的圖象向左平移個長度單位.故選:A.【點睛】本題考查三角函數(shù)的平移變換,屬于基礎(chǔ)題.3、D【解析】作出函數(shù)的圖象,結(jié)合圖象即可求出的取值范圍.【詳解】作函數(shù)和的圖象,如圖所示,可知的取值范圍是,故選D.4、D【解析】利用切化弦判斷充分性,根據(jù)第四象限的角判斷必要性.【詳解】當角為第二象限角時,,所以,當角為第三象限角時,,所以,所以命題是命題的不充分條件.當時,顯然,當角可以為第四象限角,命題是命題的不必要條件.所以命題是命題的既不充分也不必要條件.故選:D5、B【解析】根據(jù)函數(shù)的零點判定定理可求【詳解】連續(xù)函數(shù)在上單調(diào)遞增,,,的零點所在的區(qū)間為,故選B【點睛】本題主要考查了函數(shù)零點存在定理的應(yīng)用,熟記定理是關(guān)鍵,屬于基礎(chǔ)試題6、C【解析】確定定義域相同,對應(yīng)法則相同即可判斷【詳解】解:定義域為,A中定義域為,定義域不同,錯誤;B中化簡為,對應(yīng)關(guān)系不同,錯誤;C中定義域為,化簡為,正確;D中定義域為,定義域不同,錯誤;故選:C7、C【解析】函數(shù)的圖象和的圖象都關(guān)于(0,2)對稱,從而可知4個交點兩兩關(guān)于點(0,2)對稱,即可求出的值【詳解】因為函數(shù)滿足:,所以的圖象關(guān)于(0,2)對稱,函數(shù),由于函數(shù)的圖象關(guān)于(0,0)對稱,故的圖象也關(guān)于(0,2)對稱,故.故答案為C.【點睛】若函數(shù)滿足,則函數(shù)的圖象關(guān)于點對稱8、A【解析】如圖所示,分別取,,,的中點,,,,則,,,或其補角為異面直線與所成角【詳解】解:如圖所示,分別取,,,的中點,,,,則,,,或其補角為異面直線與所成角設(shè),則,,,異面直線與所成角的余弦值為,故選:A【點睛】平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角9、B【解析】根據(jù)函數(shù)是奇函數(shù),可得,求得,結(jié)合函數(shù)的解析式即可得出答案.【詳解】解:因為是定義在R上的奇函數(shù),當時,,,解得所以.故選:B.10、C【解析】求出函數(shù)的定義域,由單調(diào)性求出a的范圍,再由函數(shù)在上有意義,列式計算作答.【詳解】函數(shù)定義域為,,因在,上單調(diào),則函數(shù)在,上單調(diào),而函數(shù)在區(qū)間上單調(diào)遞減,必有函數(shù)在上單調(diào)遞減,而在上遞增,則在上遞減,于是得,解得,由,有意義得:,解得,因此,,所以實數(shù)的取值范圍是.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由已知條件可得,,再由正弦定理可得,從而根據(jù)三角形內(nèi)角和定理即可求得,從而利用公式即可得到答案.【詳解】,由得,又為銳角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案為.【點睛】三角形面積公式的應(yīng)用原則:(1)對于面積公式S=absinC=acsinB=bcsinA,一般是已知哪一個角就使用哪一個公式(2)與面積有關(guān)的問題,一般要用到正弦定理或余弦定理進行邊和角的轉(zhuǎn)化12、【解析】綜合考慮值域與單調(diào)性即可寫出滿足題意的函數(shù)解析式.【詳解】,理由如下:為上的減函數(shù),且,為上的增函數(shù),且,,故答案為:13、【解析】作出函數(shù)的圖像,計算函數(shù)的對稱軸,設(shè),數(shù)形結(jié)合判斷得時,取最小值,時,取最大值,再代入解析式從而求解出另外兩個值,從而得和,即可求解.【詳解】作出函數(shù)的圖像如圖所示,令,則函數(shù)的對稱軸為,由圖可知函數(shù)關(guān)于,,對稱,設(shè),則當時,取最小值,此時,可得,故;當時,取最大值,此時,可得,故,所以.故答案為:【點睛】解答該題的關(guān)鍵是利用數(shù)形結(jié)合,利用三角函數(shù)的對稱性與周期性判斷何時取得最大值與最小值,再代入計算.14、1【解析】利用幾何概型中的長度比即可求解.【詳解】實數(shù)滿足,解得,,解得,故答案為:1【點睛】本題考查了幾何概率的應(yīng)用,屬于基礎(chǔ)題.15、【解析】函數(shù)在上單調(diào)遞增,∴解得:故答案為16、【解析】根據(jù)冪函數(shù)的單調(diào)性和奇偶性得到,代入不等式得到,根據(jù)函數(shù)的單調(diào)性解得答案.【詳解】冪函數(shù)在上單調(diào)遞減,故,解得.,故,,.當時,不關(guān)于軸對稱,舍去;當時,關(guān)于軸對稱,滿足;當時,不關(guān)于軸對稱,舍去;故,,函數(shù)在和上單調(diào)遞減,故或或,解得或.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用二次函數(shù)的最值可求得正數(shù)的值,再利用二次不等式的解法解不等式,即可得解;(2)令,根據(jù)題意可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【小問1詳解】解:的圖象是對稱軸為,開口向上的拋物線,所以,,因為,解得,由得,即,得,因此,不等式的解集為.【小問2詳解】解:由得,設(shè)函數(shù),因為函數(shù)的圖象是開口向上的拋物線,要使當時,不等式恒成立,即在上恒成立,則,可得,解得.18、(1)(2)見解析【解析】(1)首先化簡三角函數(shù)式,然后確定平移變換之后的函數(shù)解析式即可;(2)結(jié)合(1)中函數(shù)解析式確定函數(shù)的最大值即可.【詳解】(1).由題意得,化簡得.(2)∵,可得,∴.當時,函數(shù)有最大值1;當時,函數(shù)有最小值.【點睛】本題主要考查三角函數(shù)圖像的變換,三角函數(shù)最值的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.19、(1)(2)最大值為0,最小值為【解析】(1)先求得參數(shù),再依據(jù)奇函數(shù)性質(zhì)即可求得在上的解析式;(2)轉(zhuǎn)化為二次函數(shù)在給定區(qū)間求值域即可解決.【小問1詳解】因為是定義在上的奇函數(shù),所以,即,由,得,由,解得,則當時,函數(shù)解析式為設(shè),則,,即當時,【小問2詳解】當時,,所以當,即時,的最大值為0,當,即時,的最小值為.20、(1)或;(2).【解析】(1)利用誘導公式結(jié)合化簡,再解方程結(jié)合即可求解;(2)結(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論