版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.在平面直角坐標(biāo)系中,已知點(diǎn),,連接,將向下平移6個(gè)單位得線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).(1)填空:點(diǎn)的坐標(biāo)為______,線段平移到掃過的面積為______.(2)若點(diǎn)是軸上的動(dòng)點(diǎn),連接.①如圖,當(dāng)點(diǎn)在軸正半軸時(shí),線段與線段相交于點(diǎn),用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說明理由.②當(dāng)將四邊形的面積分成1∶3兩部分時(shí),求點(diǎn)的坐標(biāo).解析:(1);24;(2)①;見解析;②或【分析】(1)由平移的性質(zhì)得出點(diǎn)C坐標(biāo),AC=6,再求出AB,即可得出結(jié)論;(2)①過點(diǎn)作交于,分別用CE表示出兩個(gè)三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進(jìn)行討論分析:(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí);當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí);分別求出點(diǎn)P的坐標(biāo)即可.【詳解】解:(1)∵點(diǎn)A(3,5),將AB向下平移6個(gè)單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點(diǎn)D的坐標(biāo)為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點(diǎn)作交于,則,如圖:∴,又∵,∴.②(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí),連接,延長(zhǎng)交軸于點(diǎn),則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí),連接,延長(zhǎng)交軸于點(diǎn),則.過點(diǎn)作交的延長(zhǎng)線于點(diǎn),則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了平移的性質(zhì),矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關(guān)鍵.2.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.3.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長(zhǎng),現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長(zhǎng).(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長(zhǎng)為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長(zhǎng)BC交MN于K,延長(zhǎng)DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.4.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.5.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫出∠M與∠BED之間的數(shù)量關(guān)系解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)的性質(zhì).6.如圖①,將一張長(zhǎng)方形紙片沿對(duì)折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對(duì)折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計(jì)算的度數(shù).解析:(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯(cuò)角相等”及折疊的性質(zhì)是解題的關(guān)鍵.7.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大?。唬?)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).8.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)的對(duì)應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動(dòng),連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動(dòng),請(qǐng)直接寫出的數(shù)量關(guān)系.解析:(1)(0,4)或(0,-4);(2);(3)答案見解析【解析】(1)先根據(jù)S△ABM=S□ABDC,得出△ABM的高為4,再根據(jù)三角形面積公式得到M點(diǎn)的坐標(biāo);(2)先計(jì)算出S梯形OBDC=5,再討論:當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),S△POC的最小值=2,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),S△POC的最大值=3,即可判斷S=S△PCD+S△POB的取值范圍的取值范圍;(3)分類討論:當(dāng)點(diǎn)P在BD上,如圖1,作PE∥CD,根據(jù)平行線的性質(zhì)得CD∥PE∥AB,則∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上時(shí),如圖2,同樣有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上時(shí),∠DCP-∠BOP=∠CPO.解:(1)由題意,得C(0,2)∴□ABDC的高為2若S△ABM=S□ABDC,則△ABM的高為4又∵點(diǎn)M是y軸上一點(diǎn)∴點(diǎn)M的坐標(biāo)為(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由題意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到端點(diǎn)B時(shí),△PCO的面積最小,為當(dāng)點(diǎn)運(yùn)動(dòng)到端點(diǎn)D時(shí),△PCO的面積最大,為∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值為5-2=3,最小值為5-3=2故S的取值范圍是:(3)如圖:當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),點(diǎn)睛:本題主要考查坐標(biāo)與圖形的性質(zhì)及三角形的面積.利用分類討論思想,并構(gòu)造輔助線利用平行線的性質(zhì)推理是解題的關(guān)鍵.9.如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).解析:(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設(shè)P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點(diǎn)P的坐標(biāo);(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結(jié)論,可求得∠3+∠4=45°;過點(diǎn)E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設(shè)P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點(diǎn)E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),熟知非負(fù)數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關(guān)鍵.10.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動(dòng),其他條件不變,請(qǐng)畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時(shí),由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時(shí),如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.11.如圖1,點(diǎn)是第二象限內(nèi)一點(diǎn),軸于,且是軸正半軸上一點(diǎn),是x軸負(fù)半軸上一點(diǎn),且.(1)(),()(2)如圖2,設(shè)為線段上一動(dòng)點(diǎn),當(dāng)時(shí),的角平分線與的角平分線的反向延長(zhǎng)線交于點(diǎn),求的度數(shù):(注:三角形三個(gè)內(nèi)角的和為)(3)如圖3,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),作交于的平分線交于,當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.解析:(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵M(jìn)N平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)計(jì)算出相應(yīng)的線段的長(zhǎng)和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).12.如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是﹣1,1,點(diǎn)P是線段AB上一動(dòng)點(diǎn),給出如下定義:如果在數(shù)軸上存在動(dòng)點(diǎn)Q,滿足|PQ|=2,那么我們把這樣的點(diǎn)Q表示的數(shù)稱為連動(dòng)數(shù),特別地,當(dāng)點(diǎn)Q表示的數(shù)是整數(shù)時(shí)我們稱為連動(dòng)整數(shù).(1)﹣3,0,2.5是連動(dòng)數(shù)的是;(2)關(guān)于x的方程2x﹣m=x+1的解滿足是連動(dòng)數(shù),求m的取值范圍;(3)當(dāng)不等式組的解集中恰好有4個(gè)解是連動(dòng)整數(shù)時(shí),求a的取值范圍.解析:(1)﹣3,2.5;(2)﹣4<m<﹣2或0<m<2;(3)1≤a<2.【分析】(1)根據(jù)連動(dòng)數(shù)的定義逐一判斷即得答案;(2)先求得方程的解,再根據(jù)連動(dòng)數(shù)的定義得出相應(yīng)的不等式組,解不等式組即可求出結(jié)果;(3)先解不等式組中的每個(gè)不等式,再根據(jù)連動(dòng)整數(shù)的概念得到關(guān)于a的不等式組,解不等式組即可求得答案.【詳解】解:(1)設(shè)點(diǎn)P表示的數(shù)是x,則,若點(diǎn)Q表示的數(shù)是﹣3,由可得,解得:x=﹣1或﹣5,所以﹣3是連動(dòng)數(shù);若點(diǎn)Q表示的數(shù)是0,由可得,解得:x=2或﹣2,所以0不是連動(dòng)數(shù);若點(diǎn)Q表示的數(shù)是2.5,由可得,解得:x=﹣0.5或4.5,所以2.5是連動(dòng)數(shù);所以﹣3,0,2.5是連動(dòng)數(shù)的是﹣3,2.5,故答案為:﹣3,2.5;(2)解關(guān)于x的方程2x﹣m=x+1得:x=m+1,∵關(guān)于x的方程2x﹣m=x+1的解滿足是連動(dòng)數(shù),∴或,解得:﹣4<m<﹣2或0<m<2;故答案為:﹣4<m<﹣2或0<m<2;(3),解不等式①,得x>﹣3,解不等式②,得x≤1+a,∵不等式組的解集中恰好有4個(gè)解是連動(dòng)整數(shù),∴四個(gè)連動(dòng)整數(shù)解為﹣2,﹣1,1,2,∴2≤1+a<3,解得:1≤a<2,∴a的取值范圍是1≤a<2.【點(diǎn)睛】本題是新定義試題,以數(shù)軸為載體,主要考查了一元一次不等式組,正確理解連動(dòng)數(shù)與連動(dòng)整數(shù)、列出相應(yīng)的不等式組是解題的關(guān)鍵.13.五一節(jié)前,某商店擬購進(jìn)A、B兩種品牌的電風(fēng)扇進(jìn)行銷售,已知購進(jìn)3臺(tái)A種品牌電風(fēng)扇所需費(fèi)用與購進(jìn)2臺(tái)B種品牌電風(fēng)扇所需費(fèi)用相同,購進(jìn)1臺(tái)A種品牌電風(fēng)扇與2臺(tái)B種品牌電風(fēng)扇共需費(fèi)用400元.(1)求A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是多少元?(2)銷售時(shí),該商店將A種品牌電風(fēng)扇定價(jià)為180元/臺(tái),B種品牌電風(fēng)扇定價(jià)為250元/臺(tái),商店擬用1000元購進(jìn)這兩種風(fēng)扇(1000元?jiǎng)偤萌坑猛辏?,為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤(rùn),該商店應(yīng)采用哪種進(jìn)貨方案?解析:(1)A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是100元、150元;(2)為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤(rùn),該商店應(yīng)采用購進(jìn)A種品牌的電風(fēng)扇7臺(tái),購進(jìn)B種品牌的電風(fēng)扇2臺(tái).【分析】(1)設(shè)A種品牌電風(fēng)扇每臺(tái)進(jìn)價(jià)元,B種品牌電風(fēng)扇每臺(tái)進(jìn)價(jià)元,根據(jù)題意即可列出關(guān)于x、y的二元一次方程組,解出x、y即可.(2)設(shè)購進(jìn)A品牌電風(fēng)扇臺(tái),B品牌電風(fēng)扇臺(tái),根據(jù)題意可列等式,由a和b都為整數(shù)即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤(rùn)進(jìn)行比較即可.【詳解】(1)設(shè)A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是100元、150元;(2)設(shè)購進(jìn)A種品牌的電風(fēng)扇a臺(tái),購進(jìn)B種品牌的電風(fēng)扇b臺(tái),由題意得:100a+150b=1000,其正整數(shù)解為:或或,當(dāng)a=1,b=6時(shí),利潤(rùn)=80×1+100×6=680(元),當(dāng)a=4,b=4時(shí),利潤(rùn)=80×4+100×4=720(元),當(dāng)a=7,b=2時(shí),利潤(rùn)=80×7+100×2=760(元),∵680<720<760,∴當(dāng)a=7,b=2時(shí),利潤(rùn)最大,答:為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤(rùn),該商店應(yīng)采用購進(jìn)A種品牌的電風(fēng)扇7臺(tái),購進(jìn)B種品牌的電風(fēng)扇2臺(tái).【點(diǎn)睛】本題主要考查了二元一次方程組的實(shí)際應(yīng)用,根據(jù)題意找出等量關(guān)系列出等式是解答本題的關(guān)鍵.14.某公園的門票價(jià)格如下表所示:某中學(xué)七年級(jí)(1)、(2)兩個(gè)班計(jì)劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個(gè)班都以班為單位分別購票,則一共應(yīng)付1172元,如果兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元.(1)列方程求出兩個(gè)班各有多少學(xué)生;(2)如果兩個(gè)班聯(lián)合起來買票,是否可以買單價(jià)為9元的票?你有什么省錢的方法來幫他們買票呢?請(qǐng)給出最省錢的方案.解析:(1)七(1)班有47人,七(2)班有51人;(2)如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元可知:可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元有∵可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因?yàn)?7+51=98<100∴如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c(diǎn)睛】熟練掌握二元一次方程組的實(shí)際問題是解題的關(guān)鍵。15.閱讀下列文字,請(qǐng)仔細(xì)體會(huì)其中的數(shù)學(xué)思想.(1)解方程組,我們利用加減消元法,很快可以求得此方程組的解為;(2)如何解方程組呢?我們可以把m+5,n+3看成一個(gè)整體,設(shè)m+5=x,n+3=y(tǒng),很快可以求出原方程組的解為;(3)由此請(qǐng)你解決下列問題:若關(guān)于m,n的方程組與有相同的解,求a、b的值.解析:(1);(2);(3)a=3,b=2.【分析】(1)利用加減消元法,可以求得;(2)利用換元法,設(shè)m+5=x,n+3=y,則方程組化為(1)中的方程組,可求得x,y的值進(jìn)一步可求出原方程組的解;(3)把a(bǔ)m和bn當(dāng)成一個(gè)整體利用已知條件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,繼而可求出a、b的值.【詳解】解:(1)兩個(gè)方程相加得,∴,把代入得,∴方程組的解為:;故答案是:;(2)設(shè)m+5=x,n+3=y(tǒng),則原方程組可化為,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程組與有相同的解可得方程組,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【點(diǎn)睛】本題主要考查二元一次方程組的解法,重點(diǎn)是考查整體思想及換元法的應(yīng)用,解題的關(guān)鍵是理解好整體思想.16.已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.(1)如圖1,過點(diǎn)B作BD⊥AM于點(diǎn)D,∠BAD與∠C有何數(shù)量關(guān)系,并說明理由;(2)如圖2,在(1)問的條件下,點(diǎn)E,F(xiàn)在DM上,連接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度數(shù).解析:(1)∠C+∠BAD=90°,理由見解析;(2)9°【分析】(1)先過點(diǎn)B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先過點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°.【詳解】解:(1)如圖2,過點(diǎn)B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如圖3,過點(diǎn)B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②聯(lián)立方程組,解得α=9°,∴∠ABE=9°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.17.對(duì)a,b定義一種新運(yùn)算T,規(guī)定:T(a,b)=(a+2b)(ax+by)(其中x,y均為非零實(shí)數(shù)).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知關(guān)于x,y的方程組,若a≥﹣2,求x+y的取值范圍;(3)在(2)的條件下,已知平面直角坐標(biāo)系上的點(diǎn)A(x,y)落在坐標(biāo)軸上,將線段OA沿x軸向右平移2個(gè)單位,得線段O′A′,坐標(biāo)軸上有一點(diǎn)B滿足三角形BOA′的面積為9,請(qǐng)直接寫出點(diǎn)B的坐標(biāo).解析:(1)x=1,y=1;(2);(3)或或或或或【分析】(1)根據(jù)新運(yùn)算定義建立方程組,解方程組即可得出答案;(2)應(yīng)用新運(yùn)算定義建立方程組,解關(guān)于、的方程組可得,進(jìn)而得出,再運(yùn)用不等式性質(zhì)即可得出答案;(3)根據(jù)題意得,由平移可得,根據(jù)點(diǎn)落在坐標(biāo)軸上,且,分類討論即可.【詳解】解:(1)根據(jù)新運(yùn)算的定義可得:,解得:;(2)由題意得:,解得:,,,,,;(3)由(2)知,,,將線段沿軸向右平移2個(gè)單位,得線段,,點(diǎn)落在坐標(biāo)軸上,且,或,或;①當(dāng)時(shí),,若點(diǎn)在軸上,,,或;若點(diǎn)在軸上,,,或;②當(dāng)時(shí),;點(diǎn)只能在軸上,,,或;綜上所述,點(diǎn)的坐標(biāo)為或或或或或.【點(diǎn)睛】本題考查了新運(yùn)算定義,解二元一次方程組,不等式性質(zhì),平移變換的性質(zhì),理解并應(yīng)用新運(yùn)算定義是解題關(guān)鍵.18.某治污公司決定購買10臺(tái)污水處理設(shè)備.現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選擇,其中每臺(tái)的價(jià)格與月處理污水量如下表:甲型乙型價(jià)格(萬元/臺(tái))xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺(tái)甲型設(shè)備比購買一臺(tái)乙型設(shè)備多2萬元,購買3臺(tái)甲型設(shè)備比購買4臺(tái)乙型設(shè)備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設(shè)備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請(qǐng)為該公司設(shè)計(jì)一種最省錢的購買方案.解析:(1);(2)該公司有6種購買方案,方案1:購買10臺(tái)乙型設(shè)備;方案2:購買1臺(tái)甲型設(shè)備,9臺(tái)乙型設(shè)備;方案3:購買2臺(tái)甲型設(shè)備,8臺(tái)乙型設(shè)備;方案4:購買3臺(tái)甲型設(shè)備,7臺(tái)乙型設(shè)備;方案5:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備;方案6:購買5臺(tái)甲型設(shè)備,5臺(tái)乙型設(shè)備;(3)最省錢的購買方案為:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備.【分析】(1)由一臺(tái)A型設(shè)備的價(jià)格是x萬元,一臺(tái)乙型設(shè)備的價(jià)格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺(tái)甲型設(shè)備-購買一臺(tái)乙型設(shè)備=2萬元,購買4臺(tái)乙型設(shè)備-購買3臺(tái)甲型設(shè)備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;(2)設(shè)購買甲型設(shè)備m臺(tái),則購買乙型設(shè)備(10-m)臺(tái),由題意得不等關(guān)系:購買甲型設(shè)備的花費(fèi)+購買乙型設(shè)備的花費(fèi)≤91萬元,根據(jù)不等關(guān)系列出不等式,再解即可;(3)由題意可得:甲型設(shè)備處理污水量+乙型設(shè)備處理污水量≥2750噸,根據(jù)不等關(guān)系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設(shè)該治污公司購進(jìn)m臺(tái)甲型設(shè)備,則購進(jìn)(10﹣m)臺(tái)乙型設(shè)備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺(tái)乙型設(shè)備;方案2:購買1臺(tái)甲型設(shè)備,9臺(tái)乙型設(shè)備;方案3:購買2臺(tái)甲型設(shè)備,8臺(tái)乙型設(shè)備;方案4:購買3臺(tái)甲型設(shè)備,7臺(tái)乙型設(shè)備;方案5:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備;方案6:購買5臺(tái)甲型設(shè)備,5臺(tái)乙型設(shè)備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當(dāng)m=4時(shí),總費(fèi)用為10×4+8×6=88(萬元);當(dāng)m=5時(shí),總費(fèi)用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備.【點(diǎn)睛】此題主要考查了二元一次方程組的應(yīng)用和一元一次不等式的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系和不等關(guān)系,列出方程(組)和不等式.19.若關(guān)于x的方程ax+b=0(a≠0)的解與關(guān)于y的方程cy+d=0(c≠0)的解滿足﹣1≤x﹣y≤1,則稱方程ax+b=0(a≠0)與方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因?yàn)椹?≤x﹣y≤1,方程2x﹣1=0與方程y﹣1=0是“友好方程”.(1)請(qǐng)通過計(jì)算判斷方程2x﹣9=5x﹣2與方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若關(guān)于x的方程3x﹣3+4(x﹣1)=0與關(guān)于y的方程+y=2k+1是“友好方程”,請(qǐng)你求出k的最大值和最小值.解析:(1)是;(2)k的最小值為﹣,最大值為【分析】(1)分別解出兩個(gè)方程,得到x﹣y的值,即可確定兩個(gè)方程是“友好方程”;(2)分別解兩個(gè)方程為x=1,,再由已知可得﹣1≤≤1,求出k的取值范圍為即可求解.【詳解】解:(1)由2x﹣9=5x﹣2,解得x=,由5(y﹣1)﹣2(1﹣y)=﹣34﹣2y,解得y=﹣3,∴x﹣y=,∴﹣1≤x﹣y≤1,∴方程2x﹣9=5x﹣2與方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是“友好方程”;(2)由3x﹣3+4(x﹣1)=0,解得x=1,由,解得,∵兩個(gè)方程是“友好方程”,∴﹣1≤x﹣y≤1,∴﹣1≤≤1,∴∴k的最小值為﹣,最大值為.【點(diǎn)睛】本題主要考查了解一元一次方程和解一元一次不等式組,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.20.在平面直角坐標(biāo)系中,點(diǎn),,,且,,滿足.(1)請(qǐng)用含的式子分別表示,兩點(diǎn)的坐標(biāo);(2)當(dāng)實(shí)數(shù)變化時(shí),判斷的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍;(3)如圖,已知線段與軸相交于點(diǎn),直線與直線交于點(diǎn),若,求實(shí)數(shù)的取值范圍.解析:(1),;(2)不變,值為;(3)【分析】(1)先解方程組,用含a的式子表示b、c的值,進(jìn)而可得點(diǎn)A,B,C的坐標(biāo).(2)根據(jù)S△ABC=S梯形AFGB+S梯形BGHC?S梯形AFHC代入數(shù)據(jù)計(jì)算即可.(3)先解方程組用含a的代數(shù)式表示出b,c,根據(jù)線段AB在與y軸相交于點(diǎn)E可得關(guān)于a的不等式組,解即可得a的一個(gè)取值范圍,再由2PA≤PC可得2S△AOB≤△S△BOC,然后用含a的代數(shù)式表示出2S△AOB與△S△BOC,進(jìn)而可得關(guān)于a的不等式,解不等式可得a的一另個(gè)取值范圍,從而可得結(jié)果.【詳解】解:(1)解方程組,得,,,(2)的面積不變,值為如圖,過點(diǎn),,分別作軸的垂線,垂足分別為,,,∵,,,∴,,,,,,∴;(3)連接,,∵,,,又∵線段在與軸相交于點(diǎn),∴,,∴,∵,∴,,∴2,如圖,過點(diǎn),,分別作軸的垂線,垂足分別為,,,∵,,,∴,解得,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題屬于三角形綜合題,考查三角形的面積,解二元一次方程組,坐標(biāo)與圖形的性質(zhì),平移的性質(zhì)等知識(shí),涉及的知識(shí)點(diǎn)多,綜合性強(qiáng),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考?jí)狠S題.21.(發(fā)現(xiàn)問題)已知,求的值.方法一:先解方程組,得出,的值,再代入,求出的值.方法二:將①②,求出的值.(提出問題)怎樣才能得到方法二呢?(分析問題)為了得到方法二,可以將①②,可得.令等式左邊,比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(建筑防水工程技術(shù))防水卷材施工階段測(cè)試試題及答案
- 2025年大學(xué)心理健康(人際交往)試題及答案
- 2025年中職圖書館學(xué)(圖書館學(xué)基礎(chǔ))試題及答案
- 2025年中職中西面點(diǎn)(酥點(diǎn)制作工藝)試題及答案
- 2025年高職物業(yè)管理(物業(yè)綠化養(yǎng)護(hù))試題及答案
- 2025年高職電子信息材料應(yīng)用技術(shù)(材料性能檢測(cè))試題及答案
- 2025年大學(xué)大四(農(nóng)林經(jīng)濟(jì)管理)農(nóng)林經(jīng)濟(jì)管理綜合實(shí)訓(xùn)階段測(cè)試題及答案
- 2025年中職農(nóng)業(yè)機(jī)械使用與維護(hù)(農(nóng)機(jī)操作規(guī)范)試題及答案
- 2025年高職寵物醫(yī)療技術(shù)(犬貓外科護(hù)理)試題及答案
- 2025年高職化學(xué)(有機(jī)化學(xué))試題及答案
- 廣西南寧市江南區(qū)維羅中學(xué)2025屆數(shù)學(xué)九上期末統(tǒng)考試題含解析
- 軟件測(cè)試方案模板(完整版)
- 復(fù)方蒲公英注射液在類風(fēng)濕關(guān)節(jié)炎中的應(yīng)用研究
- 假體隆胸護(hù)理查房
- 財(cái)險(xiǎn)保險(xiǎn)述職報(bào)告
- 2.3河流長(zhǎng)江的開發(fā)與治理(第2課時(shí))-八年級(jí)地理上冊(cè)上課課件(人教版)
- 房屋評(píng)估報(bào)告
- 唐山首鋼馬蘭莊鐵礦有限責(zé)任公司礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 城市軌道交通工程竣工驗(yàn)收管理培訓(xùn)
- 護(hù)理學(xué)第三章 第四節(jié) 人體力學(xué)在護(hù)理工作的應(yīng)用
- 人性秘籍-絕密人性系列
評(píng)論
0/150
提交評(píng)論