陜西省商洛市丹鳳中學2026屆數(shù)學高一上期末質量檢測模擬試題含解析_第1頁
陜西省商洛市丹鳳中學2026屆數(shù)學高一上期末質量檢測模擬試題含解析_第2頁
陜西省商洛市丹鳳中學2026屆數(shù)學高一上期末質量檢測模擬試題含解析_第3頁
陜西省商洛市丹鳳中學2026屆數(shù)學高一上期末質量檢測模擬試題含解析_第4頁
陜西省商洛市丹鳳中學2026屆數(shù)學高一上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省商洛市丹鳳中學2026屆數(shù)學高一上期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為()A.30° B.45°C.60° D.90°2.已知函數(shù)以下關于的結論正確的是()A.若,則B.的值域為C.在上單調遞增D.的解集為3.已知函數(shù)對任意實數(shù)都滿足,若,則A.-1 B.0C.1 D.24.函數(shù)的圖像大致為()A. B.C. D.5.公元前6世紀,古希臘的畢達哥拉斯學派通過研究正五邊形和正十邊形的作圖,發(fā)現(xiàn)了黃金分割值約為0.618,這一數(shù)值也可以表示為.若.則()A. B.C.2 D.6.下列全稱量詞命題與存在量詞命題中:①設A、B為兩個集合,若,則對任意,都有;②設A、B為兩個集合,若,則存在,使得;③是無理數(shù),是有理數(shù);④是無理數(shù),是無理數(shù).其中真命題的個數(shù)是()A.1 B.2C.3 D.47.如圖,在正四棱柱中,,點為棱的中點,過,,三點的平面截正四棱柱所得的截面面積為()A.2 B.C. D.8.條件p:|x|>x,條件q:,則p是q的()A.充要條件 B.既不充分也不必要條件C.必要不充分條件 D.充分不必要條件9.已知,則函數(shù)與函數(shù)的圖象可能是()A. B.C. D.10.《擲鐵餅者》取材于希臘的現(xiàn)實生活中的體育競技活動,刻畫的是一名強健的男子在擲鐵餅過程中最具有表現(xiàn)力的瞬間.現(xiàn)在把擲鐵餅者張開的雙臂近似看成一張拉滿弦的“弓”,擲鐵餅者的手臂長約為米,肩寬約為米,“弓”所在圓的半徑約為1.25米,則擲鐵餅者雙手之間的距離約為()A.1.012米 B.1.768米C.2.043米 D.2.945米二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),,對,用表示,中的較大者,記為,則的最小值為______.12.奇函數(shù)f(x)是定義在[-2,2]上的減函數(shù),若f(2a+1)+f(4a-3)>0,則實數(shù)a的取值范圍是_______13.在平面四邊形中,,若,則__________.14.利用隨機數(shù)表法對一個容量為90,編號為00,01,02,…,89的產品進行抽樣檢驗,抽取一個容量為10的樣本,若選定從第2行第3列的數(shù)開始向右讀數(shù)(下面摘取了隨機數(shù)表中的第1行至第5行),根據(jù)下圖,讀出的第3個數(shù)是___________.15.某時鐘的秒針端點到中心點的距離為6cm,秒針均勻地繞點旋轉,當時間時,點與鐘面上標12的點重合,將,兩點的距離表示成的函數(shù),則_______,其中16.學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的圖象,當時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當時,圖象是線段BC,其中.根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.要使得學生學習效果最佳,則教師安排核心內容的時間段為____________.(寫成區(qū)間形式)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知由方程kx2-8x+16=0的根組成的集合A只有一個元素,試求實數(shù)k的值18.已知函數(shù),.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的最大值和最小值及相應的的值.19.已知函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1(1)求實數(shù)a的值;(2)若關于x的方程f(log2x)+1﹣2klog2x=0在[2,4]上有解,求實數(shù)k的取值范圍;(3)若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求實數(shù)m的取值范圍.(附:函數(shù)g(t)=t在(0,1)單調遞減,在(1,+∞)單調遞增.)20.已知函數(shù)(,,),其部分圖像如圖所示.(1)求函數(shù)的解析式;(2)若,且,求的值.21.已知的圖象上相鄰兩對稱軸的距離為.(1)若,求的遞增區(qū)間;(2)若時,若最大值與最小值之和為5,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分別取AC.PC中點O.E.連OE,DE;則OE//PA,所以(或其補角)就是PA與BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.設正方形ABCD邊長為2,則PA=PC=BD=所以OD=OE=DE=,是正三角形,,故選C2、B【解析】A選項逐段代入求自變量的值可判斷;B選項分別求各段函數(shù)的值域再求并集可判斷;C選項取特值比較大小可判斷不單調遞增;D選項分別求各段范圍下的不等式的解集求并集即可判斷.【詳解】解:A選項:當時,若,則;當時,若,則,故A錯誤;B選項:當時,;當時,,故的值城為,B正確;C選項:當時,,當時,,在上不單調遞增,故C錯誤;D選項:當時,若,則;當時,若,則,故的解集為,故D錯誤;故選:B.3、A【解析】由題意首先確定函數(shù)的周期性,然后結合所給的關系式確定的值即可.【詳解】由可得,據(jù)此可得:,即函數(shù)是周期為2的函數(shù),且,據(jù)此可知.本題選擇A選項.【點睛】本題主要考查函數(shù)的周期性及其應用等知識,意在考查學生的轉化能力和計算求解能力.4、A【解析】先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.5、A【解析】由已知、同角三角函數(shù)關系、輔助角公式及誘導公式可得解.【詳解】由得,∴.故選:A.6、B【解析】對于命題①②,利用全稱量詞命題與存在量詞命題的定義結合集合包含與不包含的意義直接判斷;對于命題③④,舉特例說明判斷作答.【詳解】對于①,因集合A、B滿足,則由集合包含關系的定義知,對任意,都有,①是真命題;對于②,因集合A、B滿足,則由集合不包含關系的定義知,存在,使得,②是真命題;對于③,顯然是無理數(shù),也是無理數(shù),則③是假命題;對于④,顯然是無理數(shù),卻是有理數(shù),則④是假命題.所以①②是真命題.故選:B7、D【解析】根據(jù)題意畫出截面,得到截面為菱形,從而可求出截面的面積.【詳解】取的中點,的中點,連接,因為該幾何體為正四棱柱,∴故四邊形為平行四邊形,所以,又,∴,同理,且,所以過,,三點平面截正四棱柱所得的截面為菱形,所以該菱形的面積為.故選:D8、D【解析】解不等式得到p:,q:或,根據(jù)推出關系得到答案.【詳解】由得:,所以p:,而,解得:或,故q:或,因為或,且或,故p是q的充分不必要條件故答案為:D9、D【解析】根據(jù)對數(shù)關系得,所以函數(shù)與函數(shù)的單調性相同即可得到選項.【詳解】,所以,,不為1的情況下:,函數(shù)與函數(shù)的單調性相同,ABC均不滿足,D滿足題意.故選:D【點睛】此題考查函數(shù)圖象的辨析,根據(jù)已知條件找出等量關系或不等關系,分析出函數(shù)的單調性得解.10、B【解析】由題分析出這段弓所在弧長,結合弧長公式求出其所對圓心角,雙手之間的距離為其所對弦長【詳解】解:由題得:弓所在的弧長為:;所以其所對的圓心角;兩手之間的距離故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】作出函數(shù)的圖象,結合圖象即可得的最小值.【詳解】如圖,在同一直角坐標系中分別作出函數(shù)和的圖象,因為對,,故函數(shù)的圖象如圖所示:由圖可知,當時,函數(shù)取得最小值.故答案為:.12、[【解析】利用函數(shù)的奇偶性、單調性去掉不等式中的符號“f”,可轉化為具體不等式,注意函數(shù)定義域【詳解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)為奇函數(shù),得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定義在[-2,2]上的減函數(shù),∴解得:1即a∈故答案為:1【點睛】本題考查函數(shù)的奇偶性、單調性的綜合應用,考查轉化思想,解決本題的關鍵是利用性質去掉符號“f”13、##1.5【解析】設,在中,可知,在中,可得,由正弦定理,可得答案.【詳解】設,在中,,,,在中,,,,,由正弦定理得:,得,.故答案為:.14、75【解析】根據(jù)隨機數(shù)表法進行抽樣即可.【詳解】從隨機數(shù)表的第2行第3列的數(shù)開始向右讀數(shù),第一個編號為62,符合;第二個編號為38,符合;第三個編號為97,大于89,應舍去;下一個編號為75,符合.所以讀出的第3個數(shù)是:75.故答案為:75.15、【解析】設函數(shù)解析式為,由題意將、代入求出參數(shù)值,即可得解析式.【詳解】設,由題意知:,當時,,則,,令得;當時,,則,,令得,所以.故答案為:.16、【解析】當,時,設,把點代入能求出解析式;當,時,設,把點、代入能求出解析式,結合題設條件,列出不等式組,即可求解.詳解】當x∈(0,12]時,設,過點(12,78)代入得,a則f(x),當x∈(12,40]時,設y=kx+b,過點B(12,78)、C(40,50)得,即,由題意得,或得4<x≤12或12<x<28,所以4<x<28,則老師就在x∈(4,28)時段內安排核心內容,能使得學生學習效果最佳,故答案為:(4,28)【點睛】本題考查解析式的求法,考查不等式組的解法,解題時要認真審題,注意待定系數(shù)法的合理運用,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、k=0或1.【解析】討論當k=0時和當k≠0時,兩種情況,其中當k≠0時,只需Δ=64-64k=0即可.試題解析:當k=0時,原方程變?yōu)椋?x+16=0,所以x=2,此時集合A中只有一個元素2.當k≠0時,要使一元二次方程kx2-8x+16=0有一個實根,需Δ=64-64k=0,即k=1.此時方程的解為x1=x2=4,集合A中只有一個元素4.綜上可知k=0或1.18、(1),(2)時,,時,.【解析】(1)將函數(shù)化簡得,可求函數(shù)的最小正周期;(2)由求出,進而求出函數(shù)在區(qū)間上的最大值和最小值及相應的的值.【小問1詳解】所以.【小問2詳解】因為,所以,所以,所以,當時,即,,當時,即,.19、(1)﹣1;(2)0≤t;(3)m≤﹣3或m≥3【解析】(1)由二次函數(shù)的圖像與性質即可求解.(2)采用換元把方程化為t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分離參數(shù)法,化為t與2+2k在[1,2]上有交點即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把問題轉化為1≤m2﹣2mp﹣2恒成立,研究關于的函數(shù)h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【詳解】(1)函數(shù)f(x)=x2﹣2x+1+a對稱軸為x=1,所以區(qū)間[1,2]上f(x)min=f(1)=a,由根據(jù)題意函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1所以a=﹣1(2)由(1)知f(x)=x2﹣2x,若關于x的方程f(log2x)+1﹣2k?log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]則f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t2+2k在[1,2]上有解,令函數(shù)g(t)=t,在(0,1)單調遞減,在(1,+∞)單調遞增所以g(1)≤2+2k≤g(2),即2≤2+2t,解得0≤t(3)若對任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,則1≤m2﹣2mp﹣2,即m2﹣2mp﹣3≥0,令h(p)=﹣2mp+m2﹣3,所以h(﹣1)=2m+m2﹣3≥0,且h(1)=﹣2m+m2﹣3≥0,解得m≤﹣3或m≥3【點睛】本題主要考查了二次函數(shù)的圖像與性質、函數(shù)與方程以及不等式恒成立問題,綜合性比較強,需有較強的邏輯推理能力,屬于難題.20、(Ⅰ);(Ⅱ).【解析】【試題分析】(1)根據(jù)圖像的最高點求得,根據(jù)函數(shù)圖像的零點和最小值位置可知函數(shù)的四分之一周期為,由此求得,代入函數(shù)上一個點,可求得的值.(2)利用同角三角函數(shù)關系和二倍角公式,求得的值,代入所求并計算得結果.【試題解析】(Ⅰ)由圖可知,圖像過點(Ⅱ),且21、(1)增區(qū)間是[kπ-,kπ+],k∈Z(2)【解析】首先根據(jù)已知條件,求出周期,進而求出的值,確定出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論