2026屆廣東省六校聯(lián)盟高二數學第一學期期末檢測模擬試題含解析_第1頁
2026屆廣東省六校聯(lián)盟高二數學第一學期期末檢測模擬試題含解析_第2頁
2026屆廣東省六校聯(lián)盟高二數學第一學期期末檢測模擬試題含解析_第3頁
2026屆廣東省六校聯(lián)盟高二數學第一學期期末檢測模擬試題含解析_第4頁
2026屆廣東省六校聯(lián)盟高二數學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣東省六校聯(lián)盟高二數學第一學期期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則點關于平面的對稱點的坐標是()A. B.C. D.2.已知向量,,且,則的值是()A. B.C. D.3.命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題的個數為()A.0 B.2C.3 D.44.已知直線過拋物線C的焦點,且與C的對稱軸垂直,與C交于A,B兩點,P為C的準線上一點,若的面積為36,則等于()A.36 B.24C.12 D.65.復數的共軛復數的虛部為()A. B.C. D.6.直線的傾斜角為()A. B.C. D.7.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經歷發(fā)射入軌、地月轉移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉移、環(huán)月等待、月地轉移、再入回收等11個關鍵階段.在經過交會對接與樣品轉移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.828.過點且平行于直線的直線的方程為()A. B.C. D.9.已知數列中,,則()A.2 B.C. D.10.設等差數列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.2611.若直線與直線垂直,則()A6 B.4C. D.12.設雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________14.某教師組織本班學生開展課外實地測量活動,如圖是要測山高.現選擇點A和另一座山頂點C作為測量觀測點,從A測得點M的仰角,點C的仰角,測得,,已知另一座山高米,則山高_______米.15.若橢圓的長軸是短軸的2倍,且經過點,則橢圓的離心率為________.16.已知復數對應的點在復平面第一象限內,甲、乙、丙三人對復數的陳述如下為虛數單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復數______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程18.(12分)如圖,在直三棱柱中,,,,分別為,,的中點,點在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.19.(12分)某雙曲線型自然冷卻通風塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標系的基礎上,保持原點和x軸、y軸不變,建立空間直角坐標系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標,并證明此時線段PQ上任意一點都在曲面上.20.(12分)求滿足下列條件的雙曲線的標準方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為21.(12分)分別求出滿足下列條件的橢圓的標準方程:(1)焦點在y軸,短軸長為2,離心率為;(2)短軸一端點P與兩焦點,連線所構成的三角形為等邊三角形22.(10分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標準方程(2)與橢圓有相同焦點,且經過點的雙曲線的標準方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據對稱性求得坐標即可.【詳解】點關于平面的對稱點的坐標是,故選:C2、A【解析】求出向量,的坐標,利用向量數量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.3、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據互為逆否命題的兩個命題同真假,即可判斷;【詳解】解:因為命題“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題有4個;故選:D4、C【解析】設拋物線方程為,根據題意由求解.【詳解】設拋物線方程為:,因為直線過拋物線C的焦點,且與C的對稱軸垂直,所以,又P為C的準線上一點,所以點P到直線AB的距離為p,所以,解得,所以,故選:C5、B【解析】先根據復數除法與加法運算求解得,再求共軛復數及其虛部.【詳解】解:,所以其共軛復數為,其虛部為故選:B6、D【解析】由直線斜率概念可寫出傾斜角的正切值,進而可求出傾斜角.【詳解】因為直線的斜率為,所以傾斜角.故選D【點睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結果.7、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C8、B【解析】根據平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.9、A【解析】根據數列的周期性即可求解.【詳解】由得,顯然該數列中的數從開始循環(huán),數列的周期是,所以.故選:A.10、A【解析】根據給定條件利用韋達定理結合等差數列性質計算作答.【詳解】因是方程的兩根,則又是等差數列的前項和,于是得,所以.故選:A11、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.12、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.14、【解析】利用正弦定理可求出各個三角形的邊長,進而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.15、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經過點,當焦點在軸時,可知,,所以,所以,當焦點在軸時,同理可得.故答案為:16、##【解析】設,則,然后分別求出甲,乙,丙對應的結論,先假設甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設,則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復數對應的點在復平面第一象限內,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據橢圓的定義即可判斷并求解;(2)根據點差法即可求解中點弦斜率和中點弦方程.【小問1詳解】設,,E(x,y),∵,,且,點的軌跡是以,為焦點,長軸長為4的橢圓設橢圓C的方程為,記,則,,,,,曲線的標準方程為【小問2詳解】根據橢圓對稱性可知直線l斜率存在,設,則,由①-②得,,∴l(xiāng):,即.18、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據線面垂直的性質證得,再根據線面垂直的判定定理即可得證;(2)取的中點,連接,可得為的中點,證明,四邊形是平行四邊形,可得,再根據面面平行的判定定理即可得證;(3)設,由(1)(2)可得即為平面與平面的距離,求出的長度,即可得解.【小問1詳解】證明:在直三棱柱中,為的中點,,,故,因為,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小問2詳解】證明:取的中點,連接,則為的中點,因為,,分別為,,的中點,所以,且,所以四邊形是平行四邊形,所以,所以,又平面,平面,所以平面,因為,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小問3詳解】設,因為平面,平面平面,所以平面,所以即為平面與平面的距離,因平面,所以,,所以,即平面與平面的距離為.19、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設雙曲線的標準方程為,易知,設,,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數方程,設,,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設雙曲線的標準方程為,由題意知,點,的橫坐標分別為,,則設點,的坐標為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數);點在半徑為的圓上,(為參數);由已知得,整理得兩式平方求和得,則或當時,,當時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉任意坐標系上的雙曲線的交點,旋轉直角坐標系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.20、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標準方程為:【小問2詳解】由題意有,解得:,則雙曲線的標準方程為:21、(1)(2)【解析】(1)設出橢圓方程,根據短軸長和離心率求出,,從而求出橢圓方程;(2)短軸端點與焦點相連所得的線段長即為,從而求出,得到橢圓方程.【小問1詳解】設橢圓方程為,則,,則,解得:,則該橢圓的方程為【小問2詳解】設橢圓方程為,由題得:,,則,則該橢圓的方程為22、(1)或;(2)【解析】(1)根據題意,由橢圓的幾何性質可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標準方程,即可得答案;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論