山西省芮城市2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
山西省芮城市2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
山西省芮城市2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
山西省芮城市2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
山西省芮城市2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省芮城市2026屆高二數(shù)學第一學期期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.2.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.63.函數(shù)在點處的切線方程的斜率是()A. B.C. D.4.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.85.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.6.若構成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,7.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.8.等差數(shù)列中,,則前項的和()A. B.C. D.9.已知函數(shù)f(x)的圖象如圖所示,則導函數(shù)f(x)的圖象可能是()A. B.C. D.10.拋物線準線方程為()A. B.C. D.11.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.912.下列求導錯誤的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長方體ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是側面BCC1B1上的動點,且AP⊥BD1,記點P到平面ABCD的距離為d,則d的最大值為____________.14.已知=(3,a+b,a﹣b)(a,b∈R)是直線l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,則5a+b=__15.已知正方體的棱長為2,E為線段中點,F(xiàn)為線段BC上動點,則(1)的最小值為______;(2)點F到直線DE距離的最小值為______.16.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知:函數(shù)有零點;:所有的非負整數(shù)都是自然數(shù).若為假,求實數(shù)的取值范圍;(2)已知:;:.若是的必要不充分條件,求實數(shù)的取值范圍.18.(12分)已知:,有,:方程表示經(jīng)過第二、三象限的拋物線,.(1)若是真命題,求實數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實數(shù)的取值范圍.19.(12分)設數(shù)列的前項和,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)記數(shù)列前項和,求使成立的的最小值20.(12分)已知橢圓的上一點處的切線方程為,橢圓C上的點與其右焦點F的最短距離為,離心率為(1)求橢圓C的標準方程;(2)若點P為直線上任一點,過P作橢圓的兩條切線PA,PB,切點為A,B,求證:21.(12分)如圖,在平面直角標系中,已知n個圓與x軸和線均相切,且任意相鄰的兩個圓外切,其中圓.(1)求數(shù)列通項公式;(2)記n個圓的面積之和為S,求證:.22.(10分)新冠疫情下,有一學校推出了食堂監(jiān)管力度的評價與食品質量的評價系統(tǒng),每項評價只有合格和不合格兩個選項,師生可以隨時進行評價,某工作人員利用隨機抽樣的方法抽取了200位師生的信息,發(fā)現(xiàn)對監(jiān)管力度滿意的占75%,對食品質量滿意的占60%,其中對監(jiān)管力度和食品質量都滿意的有80人.(1)完成列聯(lián)表,試問:是否有99%的把握判斷監(jiān)管力度與食品質量有關聯(lián)?監(jiān)督力度情況食品質量情況對監(jiān)督力度滿意對監(jiān)督力度不滿意總計對食品質量滿意80對食品質量不滿意總計200(2)為了改進工作作風,針對抽取的200位師生,對監(jiān)管力度不滿意的人抽取3位征求意見,用X表示3人中對監(jiān)管力度與食品質量都不滿意的人數(shù),求X的分布列與均值.參考公式:,其中.參考數(shù)據(jù):①當時,有90%的把握判斷變量A、B有關聯(lián);②當時,有95%的把握判斷變量A、B有關聯(lián);③當時,有99%的把握判斷變量A、B有關聯(lián).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以OA為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以OA為直徑的圓上,而以OA為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D2、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質,還考查了理解辨析的能力,屬于基礎題.3、D【解析】求解導函數(shù),再由導數(shù)的幾何意義得切線的斜率.【詳解】求導得,由導數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D4、C【解析】根據(jù)橢圓的離心率,即可求出,進而求出長軸長.【詳解】由橢圓的性質可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質,屬于基礎題.5、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當時,為鈍角,當,,當,為銳角;當不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.6、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對于A,由,所以,,共面;對于B,由,所以,,共面;對于D,,所以,,共面,故選:C.7、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C8、D【解析】利用等差數(shù)列下標和性質可求得,根據(jù)等差數(shù)列求和公式可求得結果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.9、D【解析】根據(jù)導函數(shù)正負與原函數(shù)單調性關系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應到導函數(shù)先負再正,再負再正,且原函數(shù)在處與軸相切,故可知,導函數(shù)圖象為D故選:D10、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎題11、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B12、B【解析】根據(jù)導數(shù)運算求得正確答案.【詳解】、、運算正確.,B選項錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】以為坐標原點,建立空間直角坐標系,求得的坐標之間的關系,以及坐標的范圍,即可求得結果.【詳解】以D為原點,為x軸,為y軸,為z軸,建立空間直角坐標系如下所示:設,則,,∵,∴,解得,因為,所以c的最大值為,即點P到平面的距離d的最大值為.故答案為:.14、36【解析】根據(jù)方向向量和平面法向量的定義即可得出,然后即可得出,然后求出a,b的值,進而求出5a+b的值【詳解】∵l⊥α,∴,∴,解得,∴故答案為:3615、①.;②..【解析】建立空間直角坐標系.空一:利用空間兩點間距離公式,結合平面兩點間距離公式進行求解即可;空二:根據(jù)空間向量垂直的性質進行求解即可.【詳解】建立如圖所示的空間直角坐標系,則有.空一:,代數(shù)式表示橫軸上一點到點和點的距離之和,如下圖所示:設關于橫軸的對稱點為,當線段與橫軸的交點為點時,有最小值,最小值為;空二:設,為垂足,則有,,,因為,所以,因此,化簡得:,當時,即時,此時,有最小值,即最小值為,故答案為:;【點睛】關鍵點睛:利用空間向量垂直的性質進行求解是解題的關鍵.16、【解析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)易知為真命題,根據(jù)且命題的真假可知為假命題,結合函數(shù)零點與對應方程的根之間的關系得出,解不等式即可;(2)根據(jù)一元二次不等式的解法可得和,結合必要不充分條件的概念可得,利用集合與集合之間的關系即可得出答案.【詳解】解:(1)對于:所有的非負整數(shù)都是自然數(shù),顯然正確.因為為假,所以為假.所以“函數(shù)沒有零點”為真,所以,解得.所以實數(shù)的取值范圍是.(2)對于:,解得或.對于,不等式的解集為,因為是的必要不充分條件,所以所以或,所以或,所以實數(shù)的取值范圍是.18、(1)(2)【解析】(1)將問題轉化為不等式對應的方程無解,進而根據(jù)根的判別式小于0,計算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對應的不等式組,解之即可.【小問1詳解】由條件知,恒成立,只需的.解得.【小問2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實數(shù)的取值范圍是.19、(1).(2)10.【解析】(1)借助于將轉化為,進而得到數(shù)列為等比數(shù)列,通過首項和公比求得通項公式;(2)整理數(shù)列的通項公式,可知數(shù)列為等比數(shù)列,求得前n項和,代入不等式可求得n的最小值試題解析:(1)由已知,有,即從而又因為成等差數(shù)列,即所以,解得所以,數(shù)列是首項為2,公比為2的等比數(shù)列故(2)由(1)得.所以由,得,即因為,所以.于是,使成立的n的最小值為10考點:1.數(shù)列通項公式;2.等比數(shù)列求和20、(1)(2)證明見解析【解析】(1)設為橢圓上的點,為橢圓的右焦點,求出然后求解最小值,推出,,,得到雙曲線方程(2)設,,,,,即可得到,依題意可得以、為切點的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,因為,所以,又,所以當且僅當時,,因為,所以,,因為,所以,故橢圓的標準方程為【小問2詳解】解:由(1)知,設,,,,,所以,由題知,以為切點的橢圓切線方程為,以為切點的橢圓切線方程為,又點在直線、上,所以、,所以直線的方程為,當時,直線的斜率不存在,直線斜率為,所以,當時,,所以,所以,綜上可得;21、(1).(2)證明見解析.【解析】(1)由已知得,設圓分別切軸于點,過點作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項,為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設圓分別切軸于點,過點作,垂足為.在中,所以即化簡得,變形得,所以是以為首項,為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.22、(1)列聯(lián)表見解析,有99%的把握判斷監(jiān)管力度與食品質量有關聯(lián);(2)X的分布列見解析,X的期望為【解析】(1)根據(jù)給定條件完善列聯(lián)表,再計算的觀測值并結合給定數(shù)據(jù)即可作答.(2)求出X的可能值及各個值對應的概率列出X的分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論