2026屆北京市知春里中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2026屆北京市知春里中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2026屆北京市知春里中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2026屆北京市知春里中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2026屆北京市知春里中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆北京市知春里中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.3.定義在區(qū)間上的函數(shù)滿足:對恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.4.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.165.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關(guān)于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)6.已知函數(shù),則的值為()A. B.C.0 D.17.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.8.如果直線與直線垂直,那么的值為()A. B.C. D.29.直線被橢圓截得的弦長是A. B.C. D.10.已知數(shù)列的首項為,且,若,則的取值范圍是()A. B.C. D.11.已知的周長為,頂點、的坐標(biāo)分別為、,則點的軌跡方程為()A. B.C. D.12.已知拋物線C:的焦點為F,過點P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點,則()A. B.14C. D.15二、填空題:本題共4小題,每小題5分,共20分。13.將某校全體高一年級學(xué)生期末數(shù)學(xué)成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學(xué)生進行問卷調(diào)查,采用按成績分層隨機抽樣,則應(yīng)抽取成績不少于60分的學(xué)生人數(shù)為_______________.14.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預(yù)計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結(jié)算一次,當(dāng)年的投資收益自動轉(zhuǎn)入下一年的投資本金,若2031年1月1日結(jié)束投資計劃,則他可以一次性取出的所有投資以及收益應(yīng)有__________萬元.(參考數(shù)據(jù):,,)15.函數(shù)的圖象在點處的切線的方程是______.16.已知等差數(shù)列的公差為1,且是和的等比中項,則前10項的和為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M經(jīng)過原點和點,且它的圓心M在直線上.(1)求圓M的方程;(2)若點D為圓M上的動點,定點,求線段CD的中點P的軌跡方程.18.(12分)已知直線.(1)若,求直線與直線交點坐標(biāo);(2)若直線與直線垂直,求a的值.19.(12分)如圖在四棱錐中,底面是菱形,,平面平面,,,為的中點,是棱上的一點,且.(1)求證:平面;(2)求二面角的余弦值.20.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若不等式在上恒成立,求實數(shù)的取值范圍.21.(12分)已知橢圓過點,且離心率,為坐標(biāo)原點.(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點,直線與軸相交于點,且滿足,若存在,求出直線的方程;若不存在,請說明理由.22.(10分)某企業(yè)為響應(yīng)“安全生產(chǎn)”號召,將全部生產(chǎn)設(shè)備按設(shè)備安全系數(shù)分為A,兩個等級,其中等設(shè)備安全系數(shù)低于A等設(shè)備.企業(yè)定時對生產(chǎn)設(shè)備進行檢修,并將部分等設(shè)備更新成A等設(shè)備.據(jù)統(tǒng)計,2020年底該企業(yè)A等設(shè)備量已占全體設(shè)備總量的30%.從2021年開始,企業(yè)決定加大更新力度,預(yù)計今后每年將16%的等設(shè)備更新成A等設(shè)備,與此同時,4%的A等設(shè)備由于設(shè)備老化將降級成等設(shè)備.(1)在這種更新制度下,在將來的某一年該企業(yè)的A等設(shè)備占全體設(shè)備的比例能否超過80%?請說明理由;(2)至少在哪一年底,該企業(yè)的A等設(shè)備占全體設(shè)備的比例超過60%.(參考數(shù)據(jù):,,)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.2、C【解析】按照程序框圖的流程進行計算.【詳解】,故輸出S的值為.故選:C3、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點睛】函數(shù)的性質(zhì)是高考的重點內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問題,通過題目中給定的不等式,分別構(gòu)造兩個不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時,必須堅持定義域優(yōu)先的原則.對于函數(shù)實際應(yīng)用問題,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響4、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因為|k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時,等號成立,故選:B5、B【解析】如圖設(shè)橢圓的左焦點為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點為E,則,因為點A、B關(guān)于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B6、B【解析】對函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【詳解】,則,則,故選:B7、C【解析】根據(jù)雙曲線和直線的對稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進行求解即可.【詳解】設(shè)雙曲線的右焦點為F2,過原點傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關(guān)于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點睛】關(guān)鍵點睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.8、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A9、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標(biāo),即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題10、C【解析】由題意,得到,利用疊加法求得,結(jié)合由,轉(zhuǎn)化為恒成立,分,和三種情況討論,即可求解.【詳解】因為,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,當(dāng)時,,不等式可化為恒成立,所以;當(dāng)時,,不等式可化為恒成立;當(dāng)時,,不等式可化為恒成立,所以,綜上可得,實數(shù)的取值范圍是.故選:C.11、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結(jié)合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.12、C【解析】設(shè)A、B兩點的坐標(biāo)分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡,進而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點坐標(biāo)分別為,,直線的方程為,拋物線的準(zhǔn)線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結(jié)果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學(xué)生進行問卷調(diào)查,利用樣本估計總體的思想,則應(yīng)抽取成績不少于60分的學(xué)生人數(shù)為人故答案為:14、24【解析】根據(jù)條件求得每一年投入在最終結(jié)算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結(jié)算時的收入為,2022年的投入在結(jié)算時的收入為,,2030年的投入在結(jié)算時的收入為,則結(jié)算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:2415、【解析】求導(dǎo),求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.16、【解析】利用等比中項及等差數(shù)列通項公式求出首項,再利用等差數(shù)列的前項和公式求出前10項的和.【詳解】設(shè)等差數(shù)列的首項為,由已知條件得,即,,解得,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】(1)設(shè)圓M的方程為,由已知條件建立方程組,求解即可;(2)設(shè),,依題意得.代入圓M的方程可得點P的軌跡方程.【小問1詳解】解:設(shè)圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問2詳解】解:設(shè),,依題意得,得.點為圓M上的動點,得,化簡得P的軌跡方程為.18、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當(dāng)時,直線,聯(lián)立,解得,即交點坐標(biāo)為;【小問2詳解】解:直線與直線垂直,則,解得.19、(1)見解析;(2).【解析】(1)推導(dǎo)出PQ⊥AD,從而PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,則AQ∥BC,推導(dǎo)出MN∥PA,由此能證明PA∥平面BMQ(2)連結(jié)BD,以Q為坐標(biāo)原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【詳解】(1)由已知PA=PD,Q為AD的中點,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ?面PAD,∴PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△ANQ∽△BCN,,又,∴,∴MN∥PA,又MN?平面BMQ,PA?平面BMQ,∴PA∥平面BMQ(2)連結(jié)BD,∵底面底面是菱形,∴△ABD是正三角形,∴由(1)知PQ⊥平面ABCD,∴PQ⊥AD,PQ⊥BQ,以Q為坐標(biāo)原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,則Q(0,0,0),A(1,0,0),B(0,,0),P(0,0,),設(shè)平面BMQ的法向量=(x,y,z),∴,由(1)知MN∥PA,∴,∴,取z=1,得,平面BQP的法向量,設(shè)二面角M﹣BQ﹣P的平面角為θ,則cosθ=,∴二面角M﹣BQ﹣P的余弦值為20、(1)時,函數(shù)在單調(diào)遞增,無減區(qū)間;時,函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(1)對求導(dǎo)得到,分和進行討論,判斷出的正負(fù),從而得到的單調(diào)性;(2)設(shè)函數(shù),分和進行討論,根據(jù)的單調(diào)性和零點,得到答案.【詳解】解:(1)函數(shù)定義域是,,當(dāng)時,,函數(shù)在單調(diào)遞增,無減區(qū)間;當(dāng)時,令,得到,即,所以,,單調(diào)遞增,,,單調(diào)遞減,綜上所述,時,函數(shù)在單調(diào)遞增,無減區(qū)間;時,函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由已知在恒成立,令,,可得,則,所以在遞增,所以,①當(dāng)時,,在遞增,所以成立,符合題意.②當(dāng)時,,當(dāng)時,,∴,使,即時,在遞減,,不符合題意.綜上得【點睛】本題考查利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,根據(jù)導(dǎo)數(shù)解決不等式恒成立問題,屬于中檔題.21、(1);(2)存在,方程為和.【解析】(1)根據(jù)橢圓上的點、離心率和關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)設(shè),與橢圓方程聯(lián)立可得韋達定理形式,根據(jù)共線向量可得,代入韋達定理中可構(gòu)造關(guān)于的方程,解方程可求得,進而得到直線方程.【小問1詳解】由題意得:,解得:,橢圓的方程為;【小問2詳解】由題意知:直線斜率存在且不為零,可設(shè),,,由得:,則;,,,,,解得:,,滿足條件的直線存在,方程為和.22、(1)A等設(shè)備量不可能超過生產(chǎn)設(shè)備總量的80%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論