湖北部分重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
湖北部分重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
湖北部分重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
湖北部分重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
湖北部分重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北部分重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=12.下列導(dǎo)數(shù)運(yùn)算正確的是()A. B.C. D.3.已知圓的半徑為,平面上一定點(diǎn)到圓心的距離,是圓上任意一點(diǎn).線段的垂直平分線和直線相交于點(diǎn),設(shè)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為,當(dāng)時(shí),軌跡對(duì)應(yīng)曲線的離心率取值范圍為()A. B.C. D.4.甲、乙兩名射擊運(yùn)動(dòng)員進(jìn)行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.985.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.16 B.0.32C.0.68 D.0.846.在等比數(shù)列中,是和的等差中項(xiàng),則公比的值為()A.-2 B.1C.2或-1 D.-2或17.若,則()A.1 B.2C.3 D.48.曲線在處的切線的斜率為()A.-1 B.1C.2 D.39.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.10.均勻壓縮是物理學(xué)一種常見(jiàn)現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來(lái)描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來(lái)的一半,則點(diǎn)的對(duì)應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來(lái)的一半,則曲線上點(diǎn)的對(duì)應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來(lái)的一半,再縱向均勻壓縮至原來(lái)的,得到的曲線方程為()A. B.C. D.11.已知橢圓的離心率為,則()A. B.C. D.12.已知雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的單調(diào)遞減區(qū)間是___________.14.已知橢圓的右頂點(diǎn)為,直線與橢圓交于兩點(diǎn),若,則橢圓的離心率為_(kāi)__________.15.點(diǎn)到拋物線上的點(diǎn)的距離的最小值為_(kāi)_______.16.圓心為直線與直線的交點(diǎn),且過(guò)原點(diǎn)的圓的標(biāo)準(zhǔn)方程是________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),其中常數(shù),(1)求單調(diào)區(qū)間;(2)若且對(duì)任意,都有,證明:方程有且只有兩個(gè)實(shí)根18.(12分)已知函數(shù),記f(x)的導(dǎo)數(shù)為f′(x).若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為﹣3,且x=2時(shí)y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值19.(12分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫(huà)出函數(shù)f(x)的大致圖象,無(wú)須說(shuō)明理由(要求:坐標(biāo)系中要標(biāo)出關(guān)鍵點(diǎn));(3)求出方程的解的個(gè)數(shù).20.(12分)若函數(shù)與的圖象有一條與直線平行的公共切線,求實(shí)數(shù)a的值21.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面不計(jì)剪裁和拼接損耗,設(shè)矩形的邊長(zhǎng)|AB|xm,圓柱的體積為Vm3.(1)寫(xiě)出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;(2)當(dāng)x為何值時(shí),才能使做出的圓柱形罐子的體積V最大最大體積是多少?22.(10分)已知各項(xiàng)均為正數(shù)的等差數(shù)列中,,且,,構(gòu)成等比數(shù)列的前三項(xiàng)(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.2、B【解析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【詳解】選項(xiàng)A,,錯(cuò)誤;選項(xiàng)B,,正確;選項(xiàng)C,,錯(cuò)誤;選項(xiàng)D,,錯(cuò)誤故選:B3、D【解析】分點(diǎn)A在圓內(nèi),圓外兩種情況,根據(jù)中垂線的性質(zhì),結(jié)合橢圓、雙曲線的定義可判斷軌跡,再由離心率計(jì)算即可求解.【詳解】當(dāng)A在圓內(nèi)時(shí),如圖,,所以的軌跡是以O(shè),A為焦點(diǎn)的橢圓,其中,,此時(shí),,.當(dāng)A在圓外時(shí),如圖,因?yàn)?,所以軌跡是以O(shè),A為焦點(diǎn)的雙曲線,其中,,此時(shí),,.綜上可知,.故選:D4、A【解析】依據(jù)獨(dú)立事件同時(shí)發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A5、C【解析】根據(jù)對(duì)稱性以及概率之和等于1求出,再由即可得出答案.【詳解】∵隨機(jī)變量服從正態(tài)分布,∴故選:C.6、D【解析】由題可得,即求.【詳解】由題意,得,所以,因?yàn)?,所以,解得?故選:D.7、C【解析】由二項(xiàng)分布的方差公式即可求解.【詳解】解:因?yàn)?,所?故選:C.8、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因?yàn)?,所以,所以切線的斜率為.故選:D.9、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.10、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過(guò)題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過(guò)橫向均勻壓縮至原來(lái)的一半,縱向均勻壓縮至原來(lái)的,得到對(duì)應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.11、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進(jìn)而可得.【詳解】因?yàn)椋瑒t,所以.故選:D12、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當(dāng)為鈍角時(shí)的取值范圍,根據(jù)雙曲線的對(duì)稱性,可以只考慮點(diǎn)在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對(duì)稱性不妨考慮點(diǎn)在雙曲線第一象限部分:當(dāng)為鈍角時(shí),在中,設(shè),有,,即,,所以;當(dāng)時(shí),所在直線方程,所以,,,根據(jù)圖象可得要使,點(diǎn)向右上方移動(dòng),此時(shí),綜上所述:的取值范圍是.故選:C【點(diǎn)睛】此題考查雙曲線中焦點(diǎn)三角形相關(guān)計(jì)算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先對(duì)求導(dǎo),可得,令,解可得答案【詳解】解:由得,故的單調(diào)遞減區(qū)間是故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.14、【解析】求出右頂點(diǎn)坐標(biāo),然后推出的縱坐標(biāo),利用已知條件列出方程,求解橢圓的離心率即可【詳解】解:橢圓的右頂點(diǎn)為,直線與橢圓交于,兩點(diǎn),若,可知,不妨設(shè)在第一象限,所以的縱坐標(biāo)為:,可得:,即,可得,,所以故答案為:15、【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式,配方求出最小值.【詳解】設(shè)拋物線上的點(diǎn)坐標(biāo),則,當(dāng)時(shí),取得最小值,且最小值為.故答案為:16、【解析】由,求得圓心,再根據(jù)圓過(guò)原點(diǎn),求得半徑即可.【詳解】由,可得,即圓心為,又圓過(guò)原點(diǎn),所以圓的半徑,故圓的標(biāo)準(zhǔn)方程為故答案為:【點(diǎn)睛】本題主要考查圓的方程的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案不唯一,具體見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),談?wù)搮?shù)的范圍,根據(jù)導(dǎo)數(shù)的正負(fù),可得單調(diào)區(qū)間;(2)由已知可解得,構(gòu)造函數(shù),再根據(jù)(1)的結(jié)論,可知函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理,可證明結(jié)論.【小問(wèn)1詳解】定義域?yàn)?,因?yàn)椋?,,所以單調(diào)遞減區(qū)間為,若,,當(dāng)時(shí),,當(dāng)時(shí),,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問(wèn)2詳解】證明:若且對(duì)任意,都有,則在處取得最小值,由(1)得在取得最小值,得,令,則單調(diào)性相同,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,且,,,所以在(1e2,所以在和各有且僅有一個(gè)零點(diǎn),即方程有且只有兩個(gè)實(shí)根18、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導(dǎo)可得f′(x)的解析式,根據(jù)導(dǎo)數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗(yàn)邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當(dāng)﹣1<x<0時(shí),f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當(dāng)0<x<1時(shí),f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣319、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無(wú)極大值;(2)具體見(jiàn)解析;(3)具體見(jiàn)解析.【解析】(1)對(duì)函數(shù)求導(dǎo),進(jìn)而求出單調(diào)區(qū)間和極值;(2)結(jié)合(1),并代入幾個(gè)特殊點(diǎn),再結(jié)合函數(shù)的變化趨勢(shì)作出圖象;(3)結(jié)合(2),采用數(shù)形結(jié)合的方法求得答案.【小問(wèn)1詳解】,時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,故函數(shù)在x=-1處取得極小值為,無(wú)極大值.【小問(wèn)2詳解】作圖說(shuō)明:由(1)可知函數(shù)先減后增,有極小值;描出極小值點(diǎn),原點(diǎn)和點(diǎn)(1,e);當(dāng)時(shí),函數(shù)增加得越來(lái)越快,當(dāng)時(shí),函數(shù)越來(lái)越接近于0.【小問(wèn)3詳解】結(jié)合圖象可知,若,則方程有0個(gè)解;若,則方程有2個(gè)解;若或,則方程有1個(gè)解.20、或3【解析】設(shè)出切點(diǎn),先求和平行且和函數(shù)相切的切線,再將切線和聯(lián)立,求出的值.【詳解】設(shè)公共切線曲線上的切點(diǎn)坐標(biāo)為,根據(jù)題意,得公共切線的斜率,所以,所以與函數(shù)的圖像相切的切點(diǎn)坐標(biāo)為,故可求出公共切線方程為由直線和函數(shù)的圖像也相切,得方程,即關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,所以,解得或321、(1),;(2)時(shí),最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設(shè)圓柱底面半徑為,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論