版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣西百色市2026屆數(shù)學(xué)高一上期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知偶函數(shù)f(x)在區(qū)間單調(diào)遞增,則滿足的x取值范圍是()A. B.C. D.2.已知函數(shù)在區(qū)間是減函數(shù),則實數(shù)a的取值范圍是A. B.C. D.3.已知函數(shù),若存在實數(shù),()滿足,則的最小值為()A B.C. D.14.已知函數(shù)為奇函數(shù),且當(dāng)x>0時,=x2+,則等于()A.-2 B.0C.1 D.25.函數(shù)(且)的圖像必經(jīng)過點()A. B.C. D.6.已知集合,
,則(
)A. B.C. D.7.不等式的解集是()A.或 B.或C. D.8.以下命題(其中,表示直線,表示平面):①若,,則;②若,,則;③若,,則;④若,,則其中正確命題的個數(shù)是A.0個 B.1個C.2個 D.3個9.已知函數(shù),若方程有8個相異實根,則實數(shù)b的取值范圍為()A. B.C. D.10.若,則的值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形半徑為8,弧長為12,則中心角為__________弧度,扇形面積是________12.如圖,矩形是平面圖形斜二測畫法的直觀圖,且該直觀圖的面積為,則平面圖形的面積為______.13.已知在上是增函數(shù),則的取值范圍是___________.14.當(dāng)時,的最小值為______15.若“”是“”的必要不充分條件,則實數(shù)的取值范圍為___________.16.函數(shù)的遞增區(qū)間是__________________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在上的最小值為(1)求的單調(diào)遞增區(qū)間;(2)當(dāng)時,求的最大值以及此時x的取值集合18.已知為坐標(biāo)原點,,,若(1)求函數(shù)的對稱軸方程;(2)當(dāng)時,若函數(shù)有零點,求的范圍.19.已知圓,點是直線上的一動點,過點作圓的切線,切點為.(1)當(dāng)切線的長度為時,求線段PM長度.(2)若的外接圓為圓,試問:當(dāng)在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標(biāo);若不存在,說明理由;(3)求線段長度的最小值20.已知冪函數(shù)為偶函數(shù)(1)求的解析式;(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)的取值范圍21.已知函數(shù)(1)請在給定的坐標(biāo)系中畫出此函數(shù)的圖象;(2)寫出此函數(shù)的定義域及單調(diào)區(qū)間,并寫出值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由偶函數(shù)性質(zhì)得函數(shù)在上的單調(diào)性,然后由單調(diào)性解不等式【詳解】因為偶函數(shù)在區(qū)間上單調(diào)遞增,所以在區(qū)間上單調(diào)遞減,故越靠近軸,函數(shù)值越小,因為,所以,解得:.故選:A2、C【解析】先由題意得到二次函數(shù)在區(qū)間是增函數(shù),且在上恒成立;列出不等式組求解,即可得出結(jié)果.【詳解】因為函數(shù)在區(qū)間是減函數(shù),所以只需二次函數(shù)在區(qū)間是增函數(shù),且在上恒成立;所以有:,解得;故選C【點睛】本題主要考查由對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的問題,熟記對數(shù)函數(shù)與二次函數(shù)的性質(zhì)即可,屬于常考題型.3、A【解析】令=t,分別解得,,得到,根據(jù)參數(shù)t的范圍求得最小值.【詳解】當(dāng)0≤x≤2時,0≤x2≤4,當(dāng)2<x≤3時,2<3x-4≤5,則[0,4]∩(2,5]=(2,4],令=t∈(2,4],則,,∴,當(dāng),即時,有最小值,故選:A.4、A【解析】首先根據(jù)解析式求值,結(jié)合奇函數(shù)有即可求得【詳解】∵x>0時,=x2+∴=1+1=2又為奇函數(shù)∴故選:A【點睛】本題考查了函數(shù)的奇偶性,結(jié)合解析式及函數(shù)的奇偶性,求目標(biāo)函數(shù)值5、D【解析】根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過的定點【詳解】解:∵(且),且令得,則函數(shù)圖象必過點,故選:D6、D【解析】因,,故,應(yīng)選答案D7、A【解析】把不等式左邊的二次三項式因式分解后求出二次不等式對應(yīng)方程的兩根,利用二次不等式的解法可求得結(jié)果【詳解】由,得,解得或所以原不等式的解集為或故選:A8、A【解析】利用線面平行和線線平行的性質(zhì)和判定定理對四個命題分別分析進行選擇【詳解】①若a∥b,b?α,則a∥α或a?α,故錯;②若a∥α,b∥α,則a,b平行、相交或異面,故②錯;③若a∥b,b∥α,則a∥α或a?α,故③錯;④若a∥α,b?α,則a、b平行或異面,故④錯正確命題個數(shù)為0個,故選A.【點睛】本題考查空間兩直線的位置關(guān)系,直線與平面的位置關(guān)系,主要考查線面平行的判定和性質(zhì).9、B【解析】畫出的圖象,根據(jù)方程有個相異的實根列不等式,由此求得的取值范圍.【詳解】畫出函數(shù)的圖象如圖所示,由題意知,當(dāng)時,;當(dāng)時,.令,則原方程化為.∵方程有8個相異實根,∴關(guān)于t的方程在上有兩個不等實根.令,,∴,解得.故選:B10、C【解析】由題意求得,化簡得,再由三角函數(shù)的基本關(guān)系式,聯(lián)立方程組,求得,代入即可求解.【詳解】由,整理得,所以,又由三角函數(shù)的基本關(guān)系式,可得由解得,所以.故選C.【點睛】本題主要考查了三角函數(shù)的基本關(guān)系式的化簡求值問題,其中解答中熟記三角函數(shù)的基本關(guān)系式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】詳解】試題分析:根據(jù)弧長公式得,扇形面積考點:弧度制下弧長公式、扇形面積公式的應(yīng)用12、【解析】由題意可知,該幾何體的直觀圖面積,可通過,帶入即可求解出該平面圖形的面積.【詳解】解:由題意,直觀圖的面積為,因為直觀圖和原圖面積之間的關(guān)系為,所以原圖形的面積是故答案為:.13、【解析】將整理分段函數(shù)形式,由在上單調(diào)遞增,進而可得,即可求解【詳解】由題,,顯然,在時,單調(diào)遞增,因為在上單調(diào)遞增,所以,即,故答案為:【點睛】本題考查已知函數(shù)單調(diào)性求參數(shù),考查分段函數(shù),考查一次函數(shù)的單調(diào)性的應(yīng)用14、【解析】將所求代數(shù)式變形為,利用基本不等式即可求解.【詳解】因為,所以,所以,當(dāng)且僅當(dāng)即時等號成立,所以的最小值為,故答案為:.15、##【解析】由題意,根據(jù)必要不充分條件可得?,從而建立不等關(guān)系即可求解.【詳解】解:不等式的解集為,不等式的解集為,因為“”是“”的必要不充分條件,所以?,所以,解得,所以實數(shù)的取值范圍為,故答案為:.16、【解析】由已知有,解得,即函數(shù)的定義域為,又是開口向下的二次函數(shù),對稱軸,所以的單調(diào)遞增區(qū)間為,又因為函數(shù)以2為底的對數(shù)型函數(shù),是增函數(shù),所以函數(shù)的遞增區(qū)間為點睛:本題主要考查復(fù)合函數(shù)的單調(diào)區(qū)間,屬于易錯題.在求對數(shù)型函數(shù)的單調(diào)區(qū)間時,一定要注意定義域三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,此時x的取值集合為.【解析】(1)利用二倍角公式化簡函數(shù),再利用余弦函數(shù)性質(zhì)列式計算作答.(2)利用余弦函數(shù)性質(zhì)直接計算作答.【小問1詳解】依題意,,令,,解得,所以的單調(diào)遞增區(qū)間為.小問2詳解】由(1)知,當(dāng)時,,,解得,因此,,當(dāng),,即,時,取得最大值1,則取得最大值,所以的最大值為,此時x的取值集合為.18、(1),(2)【解析】(1)先利用數(shù)量積的坐標(biāo)表示以及三角恒等變換化簡三角函數(shù)得,再根據(jù)正弦函數(shù)的對稱性即可得出結(jié)論;(2)由題意得有解,求出函數(shù)在區(qū)間上的值域即可得出結(jié)論【詳解】解:(1),,,對稱軸方程為,即;(2),有零點,,,,,,【點睛】本題主要考查三角函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題19、(1)8(2)(3)【解析】(1)根據(jù)圓中切線長的性質(zhì)得到;(2)設(shè),經(jīng)過A,P,M三點的圓N以MP為直徑,圓N的方程為化簡求值即可;(3)(Ⅲ)求出點M到直線AB的距離,利用勾股定理,即可求線段AB長度的最小值.解析:(1)由題意知,圓M的半徑r=4,圓心M(0,6),設(shè)PA是圓的一條切線,(2)設(shè),經(jīng)過A,P,M三點的圓N以MP為直徑,圓心,半徑為得圓N的方程為即,有由,解得或圓過定點(3)圓N的方程,即①圓即②②-①得:圓M與圓N相交弦AB所在直線方程為:圓心M(0,6)到直線AB的距離弦長當(dāng)時,線段AB長度有最小值.點睛:這個題目考查的是直線和圓的位置關(guān)系,一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時候較少;再者在求圓上的點到直線或者定點的距離時,一般是轉(zhuǎn)化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;圓的問題經(jīng)常應(yīng)用的性質(zhì)有垂徑定理的應(yīng)用,切線長定理的應(yīng)用.20、(1);(2)或.【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)一年級語文知識點詳解與練習(xí)方案
- 班級文化建設(shè)活動方案及執(zhí)行細(xì)則
- 小學(xué)二年級快樂讀書推進方案
- 節(jié)能環(huán)保施工方案編制范例
- 工程設(shè)計方案標(biāo)準(zhǔn)化審查表高效設(shè)計質(zhì)量保障
- 醫(yī)療行業(yè)新技術(shù)推廣實施方案
- 小學(xué)六一兒童節(jié)活動主題策劃方案
- 建筑工程施工現(xiàn)場安全配合措施
- 工程師職稱論文寫作注意事項
- 機器人巡檢與AI智能分析融合方案
- 登高作業(yè)監(jiān)理實施細(xì)則
- 2025年婦產(chǎn)科副高試題庫及答案
- 2025食品機械行業(yè)智能化分析及技術(shù)升級趨勢與投資可行性評估報告
- 2025年度黨委黨建工作總結(jié)
- 《經(jīng)濟法學(xué)》2025-2025期末試題及答案
- CAICV智能網(wǎng)聯(lián)汽車遠(yuǎn)程升級(OTA)發(fā)展現(xiàn)狀及建議
- 新質(zhì)生產(chǎn)力在體育產(chǎn)業(yè)高質(zhì)量發(fā)展中的路徑探索
- 2025年公民素質(zhì)養(yǎng)成知識考察試題及答案解析
- 老年人營養(yǎng)和飲食
- 2025年濟南市九年級中考語文試題卷附答案解析
- 紅藍黃光治療皮膚病臨床應(yīng)用專家共識(2025版)解讀
評論
0/150
提交評論