版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省青島市城陽一中2026屆數(shù)學高一上期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若?x∈[0,3],使得不等式x2﹣2x+a≥0成立,則實數(shù)a的取值范圍是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣32.下列函數(shù)中為奇函數(shù),且在定義域上為增函數(shù)的有()A. B.C. D.3.下列函數(shù)是偶函數(shù)的是A. B.C. D.4.下列哪組中的兩個函數(shù)是同一函數(shù)()A.與 B.與C.與 D.與5.“”是“的最小正周期為”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調(diào)遞減,且f(3)=0,則不等式(x﹣1)f(x)>0的解集是A. B.C D.,7.若函數(shù)與的圖象關于直線對稱,則的單調(diào)遞增區(qū)間是()A. B.C. D.8.已知扇形的周長為8,扇形圓心角的弧度數(shù)是2,則扇形的面積為()A.2 B.4C.6 D.89.已知集合,則A. B.C.( D.)10.在三棱柱中,各棱長相等,側棱垂直于底面,點是側面的中心,則與平面所成角的大小是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如果函數(shù)滿足在集合上的值域仍是集合,則把函數(shù)稱為H函數(shù).例如:就是H函數(shù).下列函數(shù):①;②;③;④中,______是H函數(shù)(只需填寫編號)(注:“”表示不超過x的最大整數(shù))12.記函數(shù)的值域為,在區(qū)間上隨機取一個數(shù),則的概率等于__________13.已知且,函數(shù)的圖像恒過定點,若在冪函數(shù)的圖像上,則__________14.不等式x2-5x+6≤0的解集為______.15.若函數(shù)(,且)在上是減函數(shù),則實數(shù)的取值范圍是__________.16.已知,則_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知(1)求的值(2)求的值.(結果保留根號)18.已知函數(shù)部分圖象如圖所示.(1)當時,求的最值;(2)設,若關于的不等式恒成立,求實數(shù)的取值范圍.19.已知函數(shù),(1)求在上的最小值;(2)記集合,,若,求的取值范圍.20.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范圍21.已知集合,(1)分別求,;(2)已知,若,求實數(shù)的取值集合
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】等價于二次函數(shù)的最大值不小于零,即可求出答案.【詳解】設,,使得不等式成立,須,即,或,解得.故選:D【點睛】本題考查特稱命題成立求參數(shù)的問題,等價轉化是解題的關鍵,屬于基礎題.2、C【解析】根據(jù)函數(shù)的奇偶性,可排除A,B;說明的奇偶性以及單調(diào)性,可判斷C;根據(jù)的單調(diào)性,判斷D.【詳解】函數(shù)為非奇非偶函數(shù),故A錯;函數(shù)為偶函數(shù),故B錯;函數(shù),滿足,故是奇函數(shù),在定義域R上,是單調(diào)遞增函數(shù),故C正確;函數(shù)在上是增函數(shù),在上是增函數(shù),在定義域上不單調(diào),故D錯,故選:C3、C【解析】函數(shù)的定義域為所以函數(shù)為奇函數(shù);函數(shù)是非奇非偶函數(shù);函數(shù)的圖象關于y軸對稱,所以該函數(shù)是偶函數(shù);函數(shù)的對稱軸方程為x=?1,拋物線不關于y軸對稱,所以該函數(shù)不是偶函數(shù).故選C.4、D【解析】根據(jù)同一函數(shù)的概念,逐項判斷,即可得出結果.【詳解】A選項,的定義域為,的定義域為,定義域不同,故A錯;B選項,的定義域為,的定義域為,定義域不同,故B錯;C選項,的定義域為,的定義域為,定義域不同,故C錯;D選項,與的定義域都為,且,對應關系一致,故D正確.故選:D.5、A【解析】根據(jù)函數(shù)的最小正周期求得,再根據(jù)充分條件和必要條件的定義即可的解.【詳解】解:由的最小正周期為,可得,所以,所以“”是“的最小正周期為”的充分不必要條件.故選:A.6、B【解析】由偶函數(shù)在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上單調(diào)遞增,且,即函數(shù)對應的圖象如圖所示,則不等式等價為或,解得或,故選B考點:不等關系式的求解【方法點晴】本題主要考查了與函數(shù)有關的不等式的求解,其中解答中涉及到函數(shù)的奇偶性、函數(shù)的單調(diào)性,以及函數(shù)的圖象與性質(zhì)、不等式的求解等知識點的綜合考查,著重考查了學生分析問題和解答問題的能,以及推理與運算能力,試題比較基礎,屬于基礎題,本題的解得中利用函數(shù)的奇偶性和單調(diào)性,正確作出函數(shù)的圖象是解答的關鍵7、C【解析】根據(jù)題意得,,進而根據(jù)復合函數(shù)的單調(diào)性求解即可.【詳解】解:因為函數(shù)與的圖象關于直線對稱,所以,,因為的解集為,即函數(shù)的定義域為由于函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,上單調(diào)遞增,所以上單調(diào)遞增,在上單調(diào)遞減.故選:C8、B【解析】由給定條件求出扇形半徑和弧長,再由扇形面積公式求出面積得解.【詳解】設扇形所在圓半徑r,則扇形弧長,而,由此得,所以扇形的面積.故選:B9、C【解析】因為所以,故選.考點:1.集合的基本運算;2.簡單不等式的解法.10、C【解析】如圖,取中點,則平面,故,因此與平面所成角即為,設,則,,即,故,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、③④【解析】根據(jù)新定義進行判斷.【詳解】根據(jù)定義可以判斷①②在集合上的值域不是集合,顯然不是H函數(shù).③④是H函數(shù).③是H函數(shù),證明如下:顯然,不妨設,可得,即,恒有成立,滿足,總存在滿足是H函數(shù).④是H函數(shù),證明如下:顯然,不妨設,可得,即,恒有成立,滿足,總存在滿足H函數(shù).故答案為:③④12、【解析】因為;所以的概率等于點睛:(1)當試驗的結果構成的區(qū)域為長度、面積、體積等時,應考慮使用幾何概型求解(2)利用幾何概型求概率時,關鍵是試驗的全部結果構成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設出變量,在坐標系中表示所需要的區(qū)域(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率13、【解析】由題意得14、【解析】根據(jù)二次函數(shù)的特點即可求解.【詳解】由x2-5x+6≤0,可以看作拋物線,拋物線開口向上,與x軸的交點為,∴,即原不等式的解集為.15、【解析】根據(jù)分段函數(shù)的單調(diào)性,列出式子,進行求解即可.【詳解】由題可知:函數(shù)在上是減函數(shù)所以,即故答案為:16、【解析】將條件平方可得答案.【詳解】因為,所以,所以故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用二倍角公式化簡得,然后利用同角關系式即得;(2)利用兩角差的正弦公式即求.【小問1詳解】由,得,∵,,∴,∴,∴.【小問2詳解】由(1)知,∴.18、(1),;(2)【解析】(1)根據(jù)正弦型圖像的性質(zhì)求出函數(shù)解析式,在根據(jù)求出函數(shù)最值;(2)求出g(x)解析式,令,利用二次函數(shù)根分布解題即可.【小問1詳解】由圖象可知,又.,又,.由,得.當,即時,;當,即時,.【小問2詳解】,則.令,原不等式轉化為對恒成立.令,則,解得綜上,實數(shù)的取值范圍為.19、(1)答案見解析(2)【解析】(1)按對稱軸與區(qū)間的相對位置關系,分三種情況討論求最小值;(2)分與解不等式,再分析的情況即可求解.【小問1詳解】解:(1)由,拋物線開口向上,對稱軸為,在上的最小值需考慮對稱軸與區(qū)間的位置關系.(i)當時,;(ii)當時,;(ⅲ)當時,【小問2詳解】(2)解不等式,即,可得:當時,不等式的解為;當時,不等式的解為.(i)當時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時(ii)當時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時無解.綜上所述,的取值范圍.20、(Ⅰ);(Ⅱ).【解析】Ⅰ由函數(shù)的定義域及值域的求法得,,可求Ⅱ先求解C,再由集合的補集的運算及集合間的包含關系得,解得【詳解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電氣系統(tǒng)節(jié)能改造案例分析
- 2026年造價控制與BIM技術的應用研究
- 2026春招:新能源面試題及答案
- 2026春招:祥鵬航空真題及答案
- 貸款模式課件
- 貼片機安全培訓內(nèi)容課件
- 貨運安全培訓教師課件
- 貨車物流安全培訓課件
- 醫(yī)學美容行業(yè)服務禮儀解析
- 兒科護理安全與護理不良事件預防
- 清華大學教師教學檔案袋制度
- 公租房完整租賃合同范本
- 東南大學附屬中大醫(yī)院2026年招聘備考題庫及答案詳解參考
- 2025新疆阿瓦提縣招聘警務輔助人員120人參考筆試題庫及答案解析
- 貴州國企招聘:2025貴州鹽業(yè)(集團)有限責任公司貴陽分公司招聘考試題庫附答案
- 2025-2026學年秋季學期教學副校長工作述職報告
- GB/T 3098.5-2025緊固件機械性能第5部分:自攻螺釘
- 2026年服裝電商直播轉化技巧
- 2025-2026學年小學美術浙美版(2024)二年級上冊期末練習卷及答案
- 會所軟裝合同范本
- 沖刺2026中考-科學備考班會課件
評論
0/150
提交評論