版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省渭南中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b2.青花瓷是中華陶瓷燒制工藝的珍品,也是中國(guó)瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對(duì)稱,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.3.過(guò)點(diǎn),的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或44.若關(guān)于一元二次不等式的解集為,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知焦點(diǎn)在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.6.已知等差數(shù)列中,,則()A.15 B.30C.45 D.607.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開(kāi)口越小 B.越小,雙曲線開(kāi)口越大C.越大,雙曲線開(kāi)口越大 D.越小,雙曲線開(kāi)口越大8.若雙曲線的兩個(gè)焦點(diǎn)為,點(diǎn)是上的一點(diǎn),且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.9.若數(shù)列是等差數(shù)列,其前n項(xiàng)和為,若,且,則等于()A. B.C. D.10.如果雙曲線的一條漸近線方程為,且經(jīng)過(guò)點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.11.若方程表示雙曲線,則實(shí)數(shù)m的取值范圍是()A. B.C. D.12.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,,四點(diǎn)中恰有三點(diǎn)在橢圓上,則橢圓C的方程為_(kāi)_______.14.在棱長(zhǎng)為1的正方體中,___________.15.在空間直角坐標(biāo)系中,經(jīng)過(guò)且法向量的平面方程為,經(jīng)過(guò)且方向向量的直線方程為閱讀上面材料,并解決下列問(wèn)題:給出平面的方程,經(jīng)過(guò)點(diǎn)的直線的方程為,則直線l與平面所成角的余弦值為_(kāi)__________.16.已知實(shí)數(shù),滿足,則的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值18.(12分)已知圓的圓心在第一象限內(nèi),圓關(guān)于直線對(duì)稱,與軸相切,被直線截得的弦長(zhǎng)為.(1)求圓的方程;(2)若點(diǎn),求過(guò)點(diǎn)的圓的切線方程.19.(12分)已知點(diǎn)、分別是橢圓C:)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,當(dāng)∠PF1F2=時(shí),面積達(dá)到最大,且最大值為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),求面積的最大值.20.(12分)噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問(wèn)題,為了解聲音強(qiáng)度D(單位:)與聲音能量I(單位:)之間的關(guān)系,將測(cè)量得到的聲音強(qiáng)度D和聲音能量I的數(shù)據(jù)作了初步處理,得到如圖所示的散點(diǎn)圖:參考數(shù)據(jù):其中,,,,,,,,(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為聲音強(qiáng)度D關(guān)于聲音能量I的回歸模型?(給出判斷即可,不必說(shuō)明理由)(2)求聲音強(qiáng)度D關(guān)于聲音能量I回歸方程(3)假定當(dāng)聲音強(qiáng)度D大于時(shí),會(huì)產(chǎn)生噪聲污染.城市中某點(diǎn)P處共受到兩個(gè)聲源的影響,這兩個(gè)聲通的聲音能量分別是和,且.已知點(diǎn)P處的聲音能量等于與之和.請(qǐng)根據(jù)(2)中的回歸方程,判斷點(diǎn)P處是否受到噪聲污染,并說(shuō)明理由參考公式:對(duì)于一組數(shù)據(jù),其回歸直線斜率和截距的最小二乘估計(jì)公式分別為:21.(12分)已知橢圓的離心率是,且過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于A、B兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.22.(10分)在等差數(shù)列中,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】運(yùn)用不等式性質(zhì),結(jié)合特殊值法,對(duì)選項(xiàng)注逐一判斷正誤即可.【詳解】選項(xiàng)A中,若,時(shí),則成立,否則,若,則,顯然錯(cuò)誤,故選項(xiàng)A錯(cuò)誤;選項(xiàng)B中,若,,則能推出,否則,若,則,顯然錯(cuò)誤,故選項(xiàng)B錯(cuò)誤;選項(xiàng)C中,若,則,顯然錯(cuò)誤,故選項(xiàng)C錯(cuò)誤;選項(xiàng)D中,若,顯然,由不等式性質(zhì)知不等式兩邊同乘以一個(gè)正數(shù),不等式不變號(hào),即.故選:D2、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(diǎn)(2a,2a)在雙曲線上,代入雙曲線的標(biāo)準(zhǔn)方程,結(jié)合a,b,c的關(guān)系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點(diǎn)是雙曲線與截面正方形的交點(diǎn)之一,設(shè)雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點(diǎn),且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡(jiǎn)后得,解得故選:C3、A【解析】解方程即得解.【詳解】由題得.故選:A【點(diǎn)睛】本題主要考查斜率的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平.4、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實(shí)數(shù)的取值范圍是.故選:B5、D【解析】由題意,化簡(jiǎn)即可得出雙曲線的離心率【詳解】解:由題意,.故選:D6、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.7、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對(duì)雙曲線開(kāi)口大小的影響即可得解.【詳解】解:對(duì)于A,越大,雙曲線開(kāi)口越大,故A錯(cuò)誤;對(duì)于B,越小,雙曲線開(kāi)口越小,故B錯(cuò)誤;對(duì)于C,由,越大,則越大,雙曲線開(kāi)口越大,故C正確;對(duì)于D,越小,則越小,雙曲線開(kāi)口越小,故D錯(cuò)誤.故選:C.8、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當(dāng)點(diǎn)不為雙曲線的頂點(diǎn)時(shí),可得,即當(dāng)點(diǎn)為雙曲線的頂點(diǎn)時(shí),可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B9、B【解析】由等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式求出的首項(xiàng)和公差,即可求出.【詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.10、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點(diǎn)代入,進(jìn)而求得答案.【詳解】因?yàn)殡p曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.11、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標(biāo)準(zhǔn)方程的形式,然后由方程表示雙曲線可得不等關(guān)系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A12、C【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,即可得解;【詳解】解:因?yàn)閽佄锞€方程為,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線的方程為,所以焦點(diǎn)到準(zhǔn)線的距離為;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由于,關(guān)于軸對(duì)稱,故由題設(shè)知C經(jīng)過(guò),兩點(diǎn),C不經(jīng)過(guò)點(diǎn),然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關(guān)于軸對(duì)稱,故由題設(shè)知經(jīng)過(guò),兩點(diǎn),所以.又由知,不經(jīng)過(guò)點(diǎn),所以點(diǎn)在上,所以.因此,故方程為.故答案為:.【點(diǎn)睛】求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點(diǎn)位置可寫(xiě)出橢圓方程②待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出,;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在軸上和軸上兩種情況討論,也可設(shè)橢圓的方程為14、1【解析】根據(jù)向量的加法及向量數(shù)量積的運(yùn)算性質(zhì)求解.【詳解】如圖,在正方體中,,故答案為:115、##【解析】根據(jù)材料結(jié)合已知條件求得平面的法向量以及直線的方向向量,即可用向量法求得線面角.【詳解】因?yàn)槠矫娴姆匠?,不妨令,則,故其過(guò)點(diǎn),設(shè)其法向量為,根據(jù)題意則,即,又平面的方程為,則,不妨取,則,則平面的法向量;經(jīng)過(guò)點(diǎn)的直線的方程為,不妨取,則,則該直線過(guò)點(diǎn),則直線的方向向量.設(shè)直線與平面所成的角為,則.又,故,即直線l與平面所成角的余弦值為.故答案為:.16、【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點(diǎn),則取得最大值為.故答案為:【點(diǎn)睛】本題考查的是線性規(guī)劃問(wèn)題,解決線性規(guī)劃問(wèn)題的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無(wú)誤作出可行域;二,畫(huà)目標(biāo)函數(shù)所對(duì)應(yīng)直線時(shí),要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標(biāo)函數(shù)的最值會(huì)在可行域的端點(diǎn)或邊界上取得.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)最大值為,最小值為【解析】(1)求出導(dǎo)函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進(jìn)而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當(dāng)變化時(shí),與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.18、(1)(2)或【解析】(1)結(jié)合點(diǎn)到直線的距離公式、弦長(zhǎng)公式求得,由此求得圓的方程.(2)根據(jù)過(guò)的圓的切線的斜率是否存在進(jìn)行分類討論,結(jié)合點(diǎn)到直線的距離公式求得切線方程.【小問(wèn)1詳解】由題意,設(shè)圓的標(biāo)準(zhǔn)方程為:,圓關(guān)于直線對(duì)稱,圓與軸相切:…①點(diǎn)到的距離為:,圓被直線截得的弦長(zhǎng)為,,結(jié)合①有:,,又,,,圓的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】當(dāng)直線的斜率不存在時(shí),滿足題意當(dāng)直線的斜率存在時(shí),設(shè)直線的斜率為,則方程為.又圓C的圓心為,半徑,由,解得.所以直線方程為,即即直線的方程為或.19、(1)(2)3【解析】(1)根據(jù)焦點(diǎn)三角形的性質(zhì)可求出,從而可得標(biāo)準(zhǔn)方程,(2)聯(lián)立直線方程和橢圓方程,消元后利用公式表示三角形面積,從而可求面積的最大值.小問(wèn)1詳解】△PF1F2面積達(dá)到最大時(shí)為橢圓的上頂點(diǎn)或下頂點(diǎn),而此時(shí)∠PF1F2=,故面積最大時(shí)為等邊三角形,故,因面積的最大值為,故,故,故橢圓的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】設(shè),則由可得,此時(shí)恒成立.而,到的距離為,故的面積,令,設(shè),則,故在上為增函數(shù),故即的最大值為3.20、(1)更適合(2)(3)點(diǎn)P處會(huì)受到噪聲污染,理由見(jiàn)解析【解析】(1)直接判斷即可;(2)令,先算線性回歸方程再算非線性回歸方程;(3)利用基本不等式計(jì)算出的最小值,再與60比較即可.【小問(wèn)1詳解】更適合【小問(wèn)2詳解】令,則,,D關(guān)于W的回歸方程是,則D關(guān)于I的回歸方程是【小問(wèn)3詳解】設(shè)點(diǎn)P處的聲音能量為,則因?yàn)樗援?dāng)且僅當(dāng),即時(shí)等號(hào)成立所以,所以點(diǎn)P處會(huì)受到噪聲污染21、(1);(2)2.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組即可求得橢圓標(biāo)準(zhǔn)方程;(2)直線l和x軸垂直時(shí),根據(jù)已知條件求出此時(shí)△AOB面積;直線l和x軸不垂直時(shí),設(shè)直線方程為點(diǎn)斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結(jié)合韋達(dá)定理和弦長(zhǎng)得k和t關(guān)系,表示出△AOB的面積,結(jié)合基本不等式即可求解三角形面積最值.【小問(wèn)1詳解】由題知,解得,∴橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年安徽中醫(yī)藥高等??茖W(xué)校高職單招職業(yè)適應(yīng)性考試備考題庫(kù)有答案解析
- 2026年撫州職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試參考題庫(kù)帶答案解析
- 2026年湖南勞動(dòng)人事職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題帶答案解析
- 2026年湖南郵電職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題帶答案解析
- 2026年貴州護(hù)理職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試參考題庫(kù)有答案解析
- 2026年成都工貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫(kù)有答案解析
- 2026年安徽綠海商務(wù)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫(kù)有答案解析
- 2026年廣西農(nóng)業(yè)職業(yè)技術(shù)大學(xué)高職單招職業(yè)適應(yīng)性測(cè)試備考試題有答案解析
- 2026年福建藝術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能筆試備考試題帶答案解析
- 2026年河北工藝美術(shù)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫(kù)帶答案解析
- 《河南省住宅室內(nèi)裝飾裝修施工合同(示范文本)》
- 金帶街道燃?xì)夤芫W(wǎng)改造工程初步設(shè)計(jì)(說(shuō)明書(shū))
- 2024年中國(guó)燃?xì)饩咝袠I(yè)分析及2025年機(jī)會(huì)預(yù)測(cè)
- 證券公司前臺(tái)工作總結(jié)
- 汽車租賃服務(wù)項(xiàng)目管理規(guī)章制度
- DB13T 1264-2010 遠(yuǎn)程射霧技術(shù)應(yīng)用規(guī)范
- JGJT46-2024《施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)》條文解讀
- 低壓配電柜工程施工組織設(shè)計(jì)方案
- 員工獎(jiǎng)勵(lì)申請(qǐng)表格模板(可修改)
- 3.2+細(xì)胞器之間的分工合作課件高一上學(xué)期生物人教版(2019)必修1
- 二年級(jí)上冊(cè)思維應(yīng)用題20道
評(píng)論
0/150
提交評(píng)論