版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省臨夏市2026屆高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有2.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.3.雙曲線的漸近線方程是()A. B. C. D.4.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.25.黨的十九大報告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長點(diǎn)、形成新動能.共享經(jīng)濟(jì)是公眾將閑置資源通過社會化平臺與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對企業(yè)經(jīng)濟(jì)活躍度的影響,在四個不同的企業(yè)各取兩個部門進(jìn)行共享經(jīng)濟(jì)對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.6.已知,則的大小關(guān)系為()A. B. C. D.7.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)8.已知集合,集合,若,則()A. B. C. D.9.第七屆世界軍人運(yùn)動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運(yùn)動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運(yùn)動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是()A. B. C. D.10.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.611.近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.12.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足約束條件,則的最小值為______.14.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.15.設(shè)常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.16.已知集合,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.18.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.19.(12分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數(shù)a的值;(2)證明:f(x).20.(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實數(shù)的取值范圍.21.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.22.(10分)如圖,平面分別是上的動點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時,求平面與平面所成的二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)函數(shù)對稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對稱,若關(guān)于對稱,則函數(shù)在上不可能是單調(diào)的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.2、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.3、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.4、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時等號成立.故選:.【點(diǎn)睛】本題考查了向量的計算,建立直角坐標(biāo)系利用坐標(biāo)計算是解題的關(guān)鍵.5、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果,故選D.6、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..7、C【解析】
根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調(diào)性,故錯誤.故選:C【點(diǎn)睛】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.8、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當(dāng)時,,不符合題意,當(dāng)時,.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.9、A【解析】
根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點(diǎn)睛】本題考查組合的應(yīng)用和概率的計算,屬于基礎(chǔ)題.10、C【解析】
根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當(dāng)且僅當(dāng)時取“=”號.
答案:C【點(diǎn)睛】本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎(chǔ)題.11、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.【點(diǎn)睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.12、C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識進(jìn)行判斷.(2)當(dāng)一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,觀察圖形斜率最小在點(diǎn)B處,聯(lián)立,解得點(diǎn)B坐標(biāo),即可求得答案.【詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.14、20【解析】
由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點(diǎn)睛】本題考查三視圖以及幾何體體積,考查學(xué)生空間想象能力以及數(shù)學(xué)運(yùn)算能力,是一道容易題.15、【解析】
利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.16、【解析】
由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因為所以集合中的元素為奇數(shù),所以.【點(diǎn)睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點(diǎn)睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運(yùn)用,屬于中檔題.18、(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點(diǎn)睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計算能力,屬于基礎(chǔ)題.19、(1)a=1;(2)見解析【解析】
(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當(dāng)x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當(dāng)x<a時,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當(dāng)且僅當(dāng)a時取等號,故f(x).【點(diǎn)睛】本題主要考查絕對值三角不等式,基本不等式,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.20、(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導(dǎo)數(shù)求x<0時,f(x)的極大值為,即證(2)等價于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.【詳解】(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,∴f(x)的極大值為,∴當(dāng)x<0時,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,且x→0+時,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當(dāng)x∈(0,x0)時,g′(x)<0,g(x)單調(diào)遞減,當(dāng)x∈(x0,+∞)時,g′(x)>0,g(x)單調(diào)遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實數(shù)k的取值范圍是(﹣∞,0].【點(diǎn)睛】本題主要考查利用證明不等式,考查利用導(dǎo)數(shù)求最值和解答不等式的恒成立問題,意在考查學(xué)生對這些知識的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧藥房與藥品追溯
- 課件研發(fā)報告
- 醫(yī)療信息化在公共衛(wèi)生事件應(yīng)對中的作用
- 2026年老年手機(jī)攝影課程項目投資計劃書
- 2026年智慧城市傳感器網(wǎng)絡(luò)項目投資計劃書
- 課件的裝盤教學(xué)課件
- 2026年情緒藝術(shù)展覽項目可行性研究報告
- 2026年智能窗簾燈項目評估報告
- 2026年智能按摩眼罩項目可行性研究報告
- 標(biāo)快業(yè)務(wù)培訓(xùn)課件
- 陜西能源職業(yè)技術(shù)學(xué)院2026年教師公開招聘備考題庫及答案詳解(奪冠系列)
- 2026屆全國新高考語文沖刺復(fù)習(xí):疑問的三種情況作文講評
- 地質(zhì)鉆探施工方案
- 2026年1月上海市春季高考數(shù)學(xué)試題卷(含答案)
- 高壓供電協(xié)議中的合同
- 2026年植物保護(hù)(植物檢疫)考題及答案
- 2025年長護(hù)險考試試題及答案
- 11837《行政法與行政訴訟法》國家開放大學(xué)期末題庫
- 保理業(yè)務(wù)授信管理辦法(2022年)
- 模擬電子技術(shù)期末考試試卷及答案
- 醫(yī)院管理案例分享:醫(yī)院中央空調(diào)系統(tǒng)運(yùn)行管理課件
評論
0/150
提交評論