2026屆揚州市揚州中學高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
2026屆揚州市揚州中學高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
2026屆揚州市揚州中學高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
2026屆揚州市揚州中學高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
2026屆揚州市揚州中學高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆揚州市揚州中學高二數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.2.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.3.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.4.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.96.函數(shù)的定義域為,其導函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.57.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為()A.24 B.18C.12 D.68.圓()上點到直線的最小距離為1,則A.4 B.3C.2 D.19.“”是“曲線為焦點在軸上的橢圓”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.(2017新課標全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.11.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在12.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題p:若,則,那么命題p的否命題為______14.函數(shù)定義域為___________.15.已知函數(shù),若存在唯一零點,則的取值范圍是__________.16.橢圓的左、右焦點分別為,,過焦點的直線交該橢圓于兩點,若的內(nèi)切圓面積為,兩點的坐標分別為,,則的面積________,的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論的零點個數(shù).18.(12分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.19.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設,若不等式,在上恒成立,求實數(shù)的取值范圍20.(12分)已知圓:,過圓外一點作圓的兩條切線,,,為切點,設為圓上的一個動點.(1)求的取值范圍;(2)求直線的方程.21.(12分)已知橢圓的離心率為,橢圓過點.(1)求橢圓C的方程;(2)過點的直線交橢圓于M、N兩點,已知直線MA,NA分別交直線于點P,Q,求的值.22.(10分)如圖所示在多面體中,平面,四邊形是正方形,,,,.(1)求證:直線平面;(2)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點坐標為點坐標為坐標為點坐標為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.2、A【解析】根據(jù)已知條件,結合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A3、D【解析】由題設易知四邊形為矩形,可得,結合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質可得,由已知條件得到,進而得到橢圓參數(shù)的齊次式求離心率范圍.4、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設到平面的距離為,由得,解得故選:B5、B【解析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累乘值,并判斷滿足時輸出的值【詳解】解:模擬執(zhí)行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環(huán),輸出的值為27故選:6、C【解析】根據(jù)給定的導函數(shù)的圖象,結合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設導函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側的導數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.7、C【解析】根據(jù)題意,結合計數(shù)原理中的分步計算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無重復數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個數(shù)字為個位數(shù),有種可能,從1,3,5中選兩個數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個無重復數(shù)字的三位數(shù)為偶數(shù)的個數(shù)為.故選:C.8、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項是正確的.【點睛】判斷直線與圓的位置關系的常見方法:(1)幾何法:利用d與r的關系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點與圓的位置關系法:若直線恒過定點且定點在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點與圓的位置關系法適用于動直線問題9、C【解析】∵“”?“方程表示焦點在軸上的橢圓”,“方程表示焦點在軸上的橢圓”?“”,∴“”是“方程表示焦點在軸上的橢圓”的充要條件,故選C.10、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.11、A【解析】應用直線與圓的相離關系可得,再由余弦定理及三角形內(nèi)角的性質即可判斷三角形的形狀.【詳解】由題設,,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.12、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解析】直接利用否命題的定義,對原命題的條件與結論都否定即可得結果【詳解】因為命題:若,則,所以否定條件與結論后,可得命題的否命題為若,則,故答案為若,則,【點睛】本題主要考查命題的否命題,意在考查對基礎知識的掌握與應用,屬于基礎題14、【解析】根據(jù)函數(shù)定義域的求法,即可求解.【詳解】解:,解得,故函數(shù)的定義域為:.故答案為:.15、【解析】求得函數(shù)的導數(shù),得到是的唯一零點,轉化為方程無實數(shù)根或只存在實數(shù)根,進而轉化為和的圖象至多有一個交點(且如果有交點,交點必須在處),利用導數(shù)求得函數(shù)的單調(diào)性和最小值,即可求解.【詳解】由題意,函數(shù),可得,因為存在唯一零點,所以是的唯一零點,則關于的方程無實數(shù)根或只存在實數(shù)根,所以函數(shù)和的圖象至多有一個交點(且如果有交點,交點必須在處),又由,當時,,單調(diào)遞減;當時,,單調(diào)遞增,所以,所以,即即的取值范圍是.故答案為:.16、①.6②.3【解析】由題意得,由內(nèi)切圓面積為可得其半徑,根據(jù)焦點三角形面積公式可得第一空答案,結合面積公式和等面積法建立等式化簡即可.【詳解】解:由得由內(nèi)切圓面積為可得其半徑,設其內(nèi)切圓圓心為則又所以.故答案為:6;3【點睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內(nèi)切圓半徑);(4).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是(2)時,有1個零點;或時,有2個零點;時,有3個零點.【解析】(1)求解函數(shù)的導數(shù),再運用導數(shù)求解函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)導數(shù)分析原函數(shù)的極值,進而討論其零點個數(shù).【詳解】(1)因為,所以由,得或;由,得.故單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.(2)由(1)可知的極小值是,極大值是.①當時,方程有且僅有1個實根,即有1個零點;②當時,方程有2個不同實根,即有2個零點;③當時,方程有3個不同實根,即有3個零點;④當時,方程有2個不同實根,即有2個零點;⑤當時,方程有1個實根,即有1個零點.綜上,當或時,有1個零點;當或時,有2個零點;當時,有3個零點.18、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質與面積可求得即可求得方程;(2)當直線斜率不為0時,設其方程代入橢圓方程利用韋達定理求得兩根關系式,進而求得的表達式,最后求比值即可;當直線斜率為0時直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當直線斜率不為0時,設其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點的坐標為,則弦的垂直平分線為,令,得,,又,;②當直線斜率為0時,則,,則.綜合①②得是定值且為4【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結合已知條件可得出關于實數(shù)、的方程組,即可解得實數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當時,取最小值,當時,取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).所以,,要使在上恒成立,只需,因此,實數(shù)的取值范圍為20、(1)(2)【解析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點的坐標,從而可以求切點的連線的方程.【小問1詳解】如下圖所示,因為圓的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問2詳解】可知切線,中至少一條的斜率存在,設為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點的坐標為和所以故直線的方程為即21、(1)(2)1【解析】(1)由題意得到關于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點P,Q的縱坐標,將線段長度的比值轉化為縱坐標比值的問題,進一步結合韋達定理可證得,從而可得兩線段長度的比值.【小問1詳解】由題意,點橢圓上,有,解得故橢圓C的方程為.【小問2詳解】當直線l的斜率不存在時,顯然不符;當直線l的斜率存在時,設直線l為:聯(lián)立方程得:由,設,有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點睛】本題考查求橢圓的方程,解題關鍵是利用離心率與橢圓上的點,找到關于a,b,c的等量關系求解a與b.本題中直線方程代入橢圓方程整理后應用韋達定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論