版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
【備考期末】銀川市中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編一、中考數(shù)學(xué)幾何綜合壓軸題1.探究:如圖1和2,四邊形中,已知,,點,分別在、上,.(1)①如圖1,若、都是直角,把繞點逆時針旋轉(zhuǎn)至,使與重合,則能證得,請寫出推理過程;②如圖2,若、都不是直角,則當與滿足數(shù)量關(guān)系_______時,仍有;(2)拓展:如圖3,在中,,,點、均在邊上,且.若,求的長.解析:(1)①見解析;②,理由見解析;(2)【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)根據(jù)等腰直角三角形性質(zhì)好勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3?x,根據(jù)勾股定理得出方程,求出x即可.【詳解】(1)①如圖1,∵把繞點逆時針旋轉(zhuǎn)至,使與重合,∴,,∵,,∴,∴,即,在和中∴,∴,∵,∴;②,理由是:把繞點旋轉(zhuǎn)到,使和重合,則,,,∵,∴,∴,,在一條直線上,和①知求法類似,,在和中∴,∴,∵,∴;故答案為:(2)∵中,,∴,由勾股定理得:,把繞點旋轉(zhuǎn)到,使和重合,連接.則,,,∵,∴,∴,在和中∴,∴,設(shè),則,∵,∴,∵,,∴,由勾股定理得:,,解得:,即.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.2.(基礎(chǔ)鞏固)(1)如圖①,,求證:.(嘗試應(yīng)用)(2)如圖②,在菱形中,,點E,F(xiàn)分別為邊上兩點,將菱形沿翻折,點A恰好落在對角線上的點P處,若,求的值.(拓展提高)(3)如圖③,在矩形中,點P是邊上一點,連接,若,求的長.解析:(1)見解析;(2);(3).【分析】(1)由證明,再根據(jù)相似三角形的判定方法解題即可;(2)由菱形的性質(zhì),得到,,繼而證明是等邊三角形,結(jié)合(1)中相似三角形對應(yīng)邊成比例的性質(zhì),設(shè),則可整理得到,據(jù)此解題;(3)在邊上取點E,F(xiàn),使得,由矩形的性質(zhì),得到,結(jié)合(1)中相似三角形對應(yīng)邊成比例的性質(zhì)解題即可.【詳解】解:(1)證明:∵,∴,即,∵,∴;(2)∵四邊形是菱形,∴,∴,∴是等邊三角形,∴,由(1)得,,∴,設(shè),則∴,可得①,②,①-②,得,∴,∴的值為;(3)如圖,在邊上取點E,F(xiàn),使得,設(shè)AB=CD=m,∵四邊形是矩形,∴,∴,=DF,,由(1)可得,,∴,∴,整理,得,解得或(舍去),∴.【點睛】本題考查相似三角形的綜合題、等邊三角形的性質(zhì)、菱形的性質(zhì)、矩形的性質(zhì)等知識,是重要考點,難度一般,掌握相關(guān)知識是解題關(guān)鍵.3.[問題解決](1)如圖1.在平行四邊形紙片ABCD(AD>AB)中,將紙片沿過點A的直線折疊,使點B落在AD上的點處,折線AE交BC于點E,連接B'E.求證:四邊形是菱形.[規(guī)律探索](2)如圖2,在平行四邊形紙片ABCD(AD>AB)中,將紙片沿過點P的直線折疊,點B恰好落在AD上的點Q處,點A落在點A′處,得到折痕FP,那么△PFQ是等腰三角形嗎?請說明理由.[拓展應(yīng)用](3)如圖3,在矩形紙片ABCD(AD>AB)中,將紙片沿過點P的直線折疊,得到折痕FP,點B落在紙片ABCD內(nèi)部點處,點A落在紙片ABCD外部點處,與AD交于點M,且M=M.已知:AB=4,AF=2,求BP的長.解析:(1)證明見解析;(2)是,理由見解析;(3).【分析】(1)由平行線的性質(zhì)和翻折可推出,即.故四邊形是平行四邊形,再由翻折可知,即證明平行四邊形是菱形.(2)由翻折和平行線的性質(zhì)可知,,即得出,即是等腰三角形.(3)延長交AD于點G,根據(jù)題意易證,得出結(jié)論,.根據(jù)(2)同理可知為等腰三角形,即FG=PG.再在中,,即可求出,最后即可求出.【詳解】(1)由平行四邊形的性質(zhì)可知,∴,由翻折可知,∴,∴.∴四邊形是平行四邊形.再由翻折可知,∴四邊形是菱形.(2)由翻折可知,∵,∴,∴,∴QF=QP,∴是等腰三角形.(3)如圖,延長交AD于點G,根據(jù)題意可知,在和中,,∴,∴,.根據(jù)(2)同理可知為等腰三角形.∴FG=PG.∵,∴在中,,∴,∴,∴.【點睛】本題為矩形的折疊問題.考查矩形的性質(zhì),折疊的性質(zhì),平行線的性質(zhì),菱形的判定,等腰三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理,綜合性強.掌握折疊的性質(zhì)和正確的連接輔助線是解答本題的關(guān)鍵.4.(1)(問題背景)如圖1,在中,,,D是直線BC上的一點,將線段AD繞點A逆時針旋轉(zhuǎn)90°至AE,連接CE,求證:;(2)(嘗試應(yīng)用)如圖2,在(1)的條件下,延長DE,AC交于點G,交DE于點F.求證:;(3)(拓展創(chuàng)新)如圖3,是內(nèi)一點,,,,直接寫出的面積為_____________.解析:(1)見解析;(2)見解析;(3)【分析】(1)【問題背景】如圖1,根據(jù)SAS證明三角形全等即可.(2)【嘗試應(yīng)用】如圖2,過點D作DK⊥DC交FB的延長線于K.證明△ECG≌△DKF(AAS),推出DF=EG,再證明FG=DE=即可.(3)【拓展創(chuàng)新】如圖3中,過點A作AE⊥AD交BD于E,連接CE.利用全等三角形的性質(zhì)證明CE=BD,CE⊥BD,再根據(jù)三角形面積公式即可求解.【詳解】(1)【問題背景】證明:如圖1,∵,∴,在和中,,∴.(2)【嘗試應(yīng)用】證明:如圖2,過點D作交FB的延長線于K.∵,,∴,∵,,∴,∴,∴,∵,∴,,∴,∵,,∴,∴,在和中,,∴,∴,∵,∴,∴,即.(3)【拓展創(chuàng)新】如圖3中,過點A作交BD于E,連接CE.∵,,∴與都是等腰直角三角形,同法可證,∴,∵,∴,∴.故答案為:.【點睛】本題屬于幾何變換綜合題,考查了等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考壓軸題.5.綜合與實踐數(shù)學(xué)問題:(1)如圖1,是等腰直角三角形,過斜邊的中點作正方形,分別交,于點,,則,,之間的數(shù)量關(guān)系為______.問題解決:(2)如圖2,在任意內(nèi),找一點,過點作正方形,分別交,于點,,若,求的度數(shù);圖2拓展提升:(3)如圖3,在(2)的條件下,分別延長,,交于點,,則,,的數(shù)量關(guān)系為______.圖3(4)在(3)的條件下,若,,則______.解析:(1);(2)135°;(3);(4)【分析】(1)根據(jù)等腰直角三角形的斜邊與直角邊的關(guān)系及正方形的性質(zhì)即可得出數(shù)量關(guān)系;(2)延長至點,使,連接,根據(jù)正方形的性質(zhì)易證,從而可得DP=DB,進而可證,從而可得,,由三角形內(nèi)角和定理即可求得∠ADB的度數(shù);(3)由正方形的對邊平行的性質(zhì)易得AM=DM,BN=DN,從而在Rt△MDN中,由勾股定理即可得MN、AM、BN的數(shù)量關(guān)系;(4)由(2)知FP=BE,即可求得DE=DF=1,根據(jù)相似三角形的性質(zhì)可分別求得EM、FN的長,從而可得DM、DN的長,在Rt△MDN中,由勾股定理即可求得MN的長.【詳解】(1)∵是等腰直角三角形,且AB=AC,∴,∠A=∠B=45°,∵四邊形DECF是正方形,且D是AB的中點,∴DF=FC=CE=DE,∠DFA=∠DEB=90°,DF∥BC,DE∥AC,∴∠ADF=∠B=45°,∠BDE=∠A=45°,∴AF=DF,BE=DE,∴F、E分別是AC、BC的中點,∴CF=BE,∴AC=AF+CF=AF+BE,∴;(2)延長至點,使,連接.∵四邊形是正方形,∴,.∵,,,∴.∴.∵,,,∴.又∵,,∴.∴.同理可得:.∵,∴.∴.∴.(3)∵DF∥BC,DE∥AC,∴∠CBD=∠NDB,∠DAC=∠ADM,∵,,∴∠ABD=∠NDB,∠ADM=∠DAB,∴BN=DN,AM=DM.在Rt△MDN中,由勾股定理得:故答案為:,(4)∵△ABC是直角三角形,AC=3,BC=4,∴由勾股定理得:AB=5,設(shè)正方形DECF的邊長為x,由(2)知,AP=AB=5,BE=FP,CP=AP-AC=2,∵FP=CP+CF,BE=BC-CE,即4-x=2+x,解得x=1,∴BE=BC-CE=3,AF=AC-CF=2,∵EM∥AC,F(xiàn)N∥BC,∴△BME∽△BAC,△AFN∽△ACB∴,,∴,.∵DM=ME-DE=,DN=FN-DF=,.故答案為:.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理等知識,截長補短法作輔助線是本題的關(guān)鍵.6.[初步嘗試](1)如圖①,在三角形紙片ABC中,∠ACB=90°,將△ABC折疊,使點B與點C重合,折痕為MN,則AM與BM的數(shù)量關(guān)系為;[思考說理](2)如圖②,在三角形紙片ABC中,AC=BC=6,AB=10,將△ABC折疊,使點B與點C重合,折痕為MN,求的值;[拓展延伸](3)如圖③,在三角形紙片ABC中,AB=9,BC=6,∠ACB=2∠A,將△ABC沿過頂點C的直線折疊,使點B落在邊AC上的點B′處,折痕為CM.①求線段AC的長;②若點O是邊AC的中點,點P為線段OB′上的一個動點,將△APM沿PM折疊得到△A′PM,點A的對應(yīng)點為點A′,A′M與CP交于點F,求的取值范圍.解析:(1)AM=BM;(2);(3)①AC=;②≤≤.【分析】(1)利用平行線分線段成比例定理解決問題即可.(2)利用相似三角形的性質(zhì)求出BM,AM即可.(3)①證明△BCM∽△BAC,推出由此即可解決問題.②證明△PFA′∽△MFC,推出,因為CM=5,推出即可解決問題.【詳解】解:(1)如圖①中,∵△ABC折疊,使點B與點C重合,折痕為MN,∴MN垂直平分線段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案為:AM=BM.(2)如圖②中,∵CA=CB=6,∴∠A=∠B,由題意MN垂直平分線段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴,∴,∴BM=,∴AM=AB﹣BM=10﹣,∴;(3)①如圖③中,由折疊的性質(zhì)可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴∴,∴BM=4,∴AM=CM=5,∴,∴AC=.②如圖③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴,∵CM=5,∴,∵點P在線段OB上運動,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.【點睛】本題屬于幾何變換綜合題,考查了相似三角形的判定和性質(zhì),解直角三角形,等腰三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.7.在中,點D,E分別是邊上的點,.基礎(chǔ)理解:(1)如圖1,若,求的值;證明與拓展:(2)如圖2,將繞點A逆時針旋轉(zhuǎn)a度,得到,連接;①求證:;②如圖3,若在旋轉(zhuǎn)的過程中,點恰好落在上時,連接,則的面積為________.解析:(1);(2)①見詳解;②13.44【分析】(1)利用平行線分線段定理,直接求解即可;、(2)①先推出,從而得,進而即可得到結(jié)論;②先推出AE=AE1=8,DE=D1E1=10,過點A作AM⊥DE于點M,則DM=3.6,D1E=2.8,再證明∠D1EE1=90°,進而即可求解.【詳解】解:(1)∵,,∴=;(2)①∵將繞點A逆時針旋轉(zhuǎn)a度,得到,∴=AD,=AE,∠BAD1=∠CAE1,∵,∴,即,∴,∴,∴;②由①可知,∴,∵將繞點A逆時針旋轉(zhuǎn),得到,點恰好落在上,∴AD1=AD=6,∠D1AE1=∠DAE=90°,∴AE=AE1=AD1=8,DE=D1E1=,過點A作AM⊥DE于點M,則DM=D1M=AD×cos∠ADE=AD×=6×=3.6,∴D1E=10-3.6×2=2.8,∵∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,又∵AD1=AD,AE=AE1,∴∠ADE=,∴∠AED+=∠AED+∠ADE=90°,即:∠D1EE1=90°,∴,∴的面積=D1E?EE1=×2.8×9.6=13.44.故答案是:13.44.【點睛】本題主要考查相似三角形的判定和性質(zhì),解直角三角形,勾股定理,平行線分線段成比例定理,旋轉(zhuǎn)的性質(zhì),熟練掌握相似三角形的判定和性質(zhì),是解題的關(guān)鍵.8.(了解概念)在凸四邊形中,若一邊與它的兩條鄰邊組成的兩個內(nèi)角相等,則稱該四邊形為鄰等四邊形,這條邊叫做這個四邊形的鄰等邊.(理解運用)(1)在鄰等四邊形中,,,若是這個鄰等四邊形的鄰等邊,則的度數(shù)為__________;(2)如圖,凸四邊形中,P為邊的中點,,判斷四邊形是否為鄰等四邊形,并證明你的結(jié)論;(拓展提升)(3)在平面直角坐標系中,為鄰等四邊形的鄰等邊,且邊與x軸重合,已知,,,若在邊上使的點P有且僅有1個,則m的值是__________.解析:(1)130°;(2)四邊形ABCD是鄰等四邊形,理由見解析;(3)﹣5±4【分析】(1)根據(jù)鄰等四邊形的定義即可求解;(2)由△ADP∽△PDC,可得,∠DAP=∠DPC,∠APD=∠PCD,由P為AB的中點,可得AP=BP,則,可證△BPC∽△ADP,由相似三角形的性質(zhì)得出∠A=∠B即可;(3)①若點B在點A右側(cè),如圖,由AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,可證△ADP∽△BPC,可得=,設(shè)點P(n,0),由等腰直角三角形可求∠BAD=45°,可求B、C橫坐標之差為3,B(m+3,0),將AP,BP,AD,BC,代入得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個解,可求得m=﹣5+4;②若點B在點A左側(cè),可求得∠BAD=135°,可證△ADP∽△BPC,可得=,可求得B、C橫坐標之差為3,,可求得m=﹣5﹣4.【詳解】解:(1)∵CD為鄰等邊,∴∠C=∠D,又∵,,∴∠C=∠D=(360°﹣∠A﹣∠B)÷2=130°,∴∠C=130°.故答案為:130°;(2)四邊形ABCD是鄰等四邊形,理由如下:∵△ADP∽△PDC,∴,∠DAP=∠DPC,∠APD=∠PCD,∠ADP=∠PDC,又∵P為AB的中點,∴AP=BP,∴,∴,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四邊形ABCD為鄰等四邊形;(3)若點B在點A右側(cè),如圖,∵AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴=,設(shè)點P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,過點C作CE⊥x軸于點E,則∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵點C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD==,BC==,代入=得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±4,又∵點C在點D右側(cè),∴m=﹣5+4;②若點B在點A左側(cè),如圖,此時,∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴=,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=,BC=,∴,解得:m=﹣5±4,又∵點C在點D左側(cè),∴m=﹣5﹣4;綜上所述:m=﹣5±4.【點睛】本題是相似綜合題,考查新定義圖形,仔細閱讀題目,抓住定義中的性質(zhì),會驗證新定義圖形,相似三角形的判定與性質(zhì),一元二次方程根的判別式,利用相似三角形的性質(zhì)構(gòu)造關(guān)于n的一元二次方程是解題關(guān)鍵.9.數(shù)學(xué)課上,李老師出示了如下框中的題目.在等邊三角形中,點E在上,點D在的延長線上,且,如圖,試確定線段與的大小關(guān)系,并說明理由.小敏與同桌小聰討論后,進行了如下解答:(1)特殊情況,探索結(jié)論當點E為的中點時,如圖1,確定線段與的大小關(guān)系.請你直接寫出結(jié)論:_____(填“>”,“<”或“=”).(2)特例啟發(fā),解答題目解:如圖2,題目中,與的大小關(guān)系是:____(填“>”“<”或“=”).理由如下:(請你完成以下解答過程)(3)拓展結(jié)論,設(shè)計新題在等邊三角形中,點E在直線上,點D在直線上,且.若的邊長為1,,求的長(請你直接寫出結(jié)果).解析:(1)=;(2)=;(3)3或1【分析】(1)根據(jù)等邊三角形性質(zhì)和等腰三角形的性質(zhì)求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)過E作EF∥BC交AC于F,求出等邊三角形AEF,證△DEB和△ECF全等,求出BD=EF即可;(3)當D在CB的延長線上,E在AB的延長線式時,由(2)求出CD=3,當E在BA的延長線上,D在BC的延長線上時,求出CD=1.【詳解】解:(1)如圖1,過點作,交于點,為等邊三角形,,∠A=60°,∴為等邊三角形,,,,,,,在和中,,,,故答案為:;(2)如圖1,過E作EF∥BC交AC于F,∵等邊三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等邊三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF(AAS),∴BD=EF=AE,即AE=BD,故答案為:=.(3)CD=1或3,理由是:分為兩種情況:①如圖2過A作AM⊥BC于M,過E作EN⊥BC于N,則AM∥EN,∵△ABC是等邊三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AB=1,AE=2,∴AB=BE=1,∵EN⊥DC,AM⊥BC,∴∠AMB=∠ENB=90°,在△ABM和△EBN中,∴△AMB≌△ENB(AAS),∴BN=BM=,∴CN=1+=,CD=2CN=3;②如圖3,作AM⊥BC于M,過E作EN⊥BC于N,則AM∥EN,∵△ABC是等邊三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴,∴,∴MN=1,∴CN=1-=,∴CD=2CN=1,即CD=3或1.【點睛】本題綜合考查了等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,三角形的外角性質(zhì)等知識點的應(yīng)用,解(2)小題的關(guān)鍵是構(gòu)造全等的三角形后求出BD=EF,解(3)小題的關(guān)鍵是確定出有幾種情況,求出每種情況的CD值,注意,不要漏解?。?0.如圖,已知和均為等腰三角形,,,將這兩個三角形放置在一起.(1)問題發(fā)現(xiàn)如圖①,當時,點、、在同一直線上,連接,則的度數(shù)為__________,線段、、之間的數(shù)量關(guān)系是__________;(2)拓展探究如圖②,當時,點、、在同一直線上,連接.請判斷的度數(shù)及線段、、之間的數(shù)量關(guān)系,并說明理由;(3)解決問題如圖③,,,,連接、,在繞點旋轉(zhuǎn)的過程中,當時,請直接寫出的長解析:(1);(2);(3)或.【分析】(1)證明△ACE≌△ABD,得出CE=AD,∠AEC=∠ADB,即可得出結(jié)論;(2)證明△ACE∽△ABD,得出∠AEC=∠ADB,,即可得出結(jié)論;(3)先判斷出,再求出,①當點E在點D上方時,先判斷出四邊形APDE是矩形,求出AP=DP=AE=2,再根據(jù)勾股定理求出,BP=6,得出BD=4;②當點E在點D下方時,同①的方法得,AP=DP=AE=1,BP=4,進而得出BD=BP+DP=8,即可得出結(jié)論.【詳解】(1)在△ABC為等腰三角形,AC=BC,∠ACB=60°,∴△ABC是等邊三角形,∴AC=AB,∠CAB=60°,同理:AE=AD,∠ADE=∠EAD=60°,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∴△ACE≌△ABD(SAS),∴CE=AD,∠AEC=∠ADB,∵點B、D、E在同一直線上,∴∠ADB=180°-∠ADE=120°,∴∠AEC=120°,∴∵DE=AE,∴BE=DE+BD=AE+CE,故答案為60°,BE=AE+CE;(2).理由如下:和均為等腰三角形,,,,,,點、、在同一直線上,,.;(3)由(2)知,△ACE∽△ABD,∴,在Rt△ABC中,,∴;①當點E在點D上方時,如圖③,過點A作AP⊥BD交BD的延長線于P,∵DE⊥BD,∴∠PDE=∠AED=∠APD,∴四邊形APDE是矩形,∵AE=DE,∴矩形APDE是正方形,∴AP=DP=AE=2,在Rt△APB中,根據(jù)勾股定理得,∴BD=BP-AP=4,∴;②當點E在點D下方時,如圖④,同①的方法得,AP=DP=AE=2,BP=4,∴BD=BP+DP=8,∴,即:CE的長為或.【點睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等邊三角形的性質(zhì),判斷出△ACE∽△ABD是解本題的關(guān)鍵.11.數(shù)學(xué)課外活動小組的同學(xué)在學(xué)習(xí)了完全平方公式之后,針對兩個正數(shù)之和與這兩個正數(shù)之積的算術(shù)平方根的兩倍之間的關(guān)系進行了探究,請閱讀以下探究過程并解決問題.猜想發(fā)現(xiàn):由;;;;;猜想:如果,,那么存在(當且僅當時等號成立).猜想證明:∵∴①當且僅當,即時,,∴;②當,即時,,∴.綜合上述可得:若,,則成立(當日僅當時等號成立).猜想運用:(1)對于函數(shù),當取何值時,函數(shù)的值最???最小值是多少?變式探究:(2)對于函數(shù),當取何值時,函數(shù)的值最???最小值是多少?拓展應(yīng)用:(3)疫情期間、為了解決疑似人員的臨隔離問題.高速公路榆測站入口處,檢測人員利用檢測站的一面墻(墻的長度不限),用63米長的鋼絲網(wǎng)圍成了9間相同的長方形隔離房,如圖.設(shè)每間離房的面積為(米2).問:每間隔離房的長、寬各為多少時,可使每間隔離房的面積最大?最大面積是多少?解析:(1),函數(shù)的最小值為2;(2),函數(shù)的最小值為5;(3)每間隔離房長為米,寬為米時,的最大值為【分析】猜想運用:根據(jù)材料以及所學(xué)完全平方公式證明求解即可;變式探究:將原式轉(zhuǎn)換為,再根據(jù)材料中方法計算即可;拓展應(yīng)用:設(shè)每間隔離房與墻平行的邊為米,與墻垂直的邊為米,依題意列出方程,然后根據(jù)兩個正數(shù)之和與這兩個正數(shù)之積的算術(shù)平方根的兩倍之間的關(guān)系探究最大值即可.【詳解】猜想運用:∵,∴,∴,∴當時,,此時,只取,即時,函數(shù)的最小值為2.變式探究:∵,∴,,∴,∴當時,,此時,∴,(舍去),即時,函數(shù)的最小值為5.拓展應(yīng)用:設(shè)每間隔離房與墻平行的邊為米,與墻垂直的邊為米,依題意得:,即,∵,,∴,即,整理得:,即,∴當時,此時,,即每間隔離房長為米,寬為米時,的最大值為.【點睛】本題主要考查根據(jù)完全平方公式探究兩個正數(shù)之和與這兩個正數(shù)之積的算術(shù)平方根的兩倍之間的關(guān)系,熟練運用完全平方公式并參照材料中步驟進行計算是解題關(guān)鍵,屬于創(chuàng)新探究題.12.如圖1,已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明:四邊形CEGF是正方形;(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖2所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由;(3)拓展與運用:正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖3所示,當B,E,F(xiàn)三點在一條直線上時,延長CG交AD于點H,若AG=6,GH=2,求BC的長.解析:(1)證明見解析;(2)AG=BE,理由見解析;(3)BC=3.【分析】(1)先說明GE⊥BC、GF⊥CD,再結(jié)合∠BCD=90°可證四邊形CEGF是矩形,再由∠ECG=45°即可證明;(2)連接CG,證明△ACG∽△BCE,再應(yīng)用相似三角形的性質(zhì)解答即可;(3)先證△AHG∽△CHA可得,設(shè)BC=CD=AD=a,則AC=a,求出AH=a,DH=a,CH=,最后代入即可求得a的值.【詳解】(1)∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形.(2)結(jié)論:AG=BE;理由:連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=,,∴,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由,得,∴AH=a,則DH=AD﹣AH=a,,∴,得,解得:a=3,即BC=3.【點睛】本題屬于四邊形綜合題,主要考查相似形的判定和性質(zhì)、正方形的性質(zhì)等知識點,解題的關(guān)鍵是正確尋找相似三角形解決問題并利用參數(shù)構(gòu)建方程解決問題.13.在中,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應(yīng)點分別為).(1)問題發(fā)現(xiàn)如圖1,若與重合時,則的度數(shù)為____________;(2)類比探究:如圖2,設(shè)與BC的交點為,當為的中點時,求線段的長;(3)拓展延伸在旋轉(zhuǎn)過程中,當點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.解析:(1)60;(2);(3)【分析】(1)由旋轉(zhuǎn)可得:AC=A'C=2,進而得到BC=,依據(jù)∠A'BC=90°,可得,即可得到∠A'CB=30°,∠ACA'=60°;(2)根據(jù)M為A'B'的中點,即可得出∠A=∠A'CM,進而得到,依據(jù)tan∠Q=tan∠A=,即可得到BQ=BC×=2,進而得出PQ=PB+BQ=;(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.【詳解】解:(1)由旋轉(zhuǎn)可得:,,,,,,,,.(2)為的中點,,山旋轉(zhuǎn)可得,,,,,,,;(3)四邊形四邊形最小即最小,,取的中點,,,即,當最小時,最小,,即與正合時,最小,,,的最小值,四邊形=.【點睛】此題考查四邊形綜合題,旋轉(zhuǎn)的性質(zhì),解直角三角形以及直角三角形的性質(zhì)的綜合運用,解題關(guān)鍵在于掌握旋轉(zhuǎn)變換中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.14.(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點.填空:①的值為______;②的度數(shù)為______.(2)類比探究如圖2,在和中,,,連接交的延長線于點.請判斷的值及的度數(shù),并說明理由;(3)拓展延伸在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點,若,,請直接寫出當點與點在同一條直線上時的長.解析:(1)①1;②;(2),.理由見解析;(3)2或4.【分析】(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;②由△COA≌△DOB,得∠CAO=∠DBO,然后根據(jù)三角形的內(nèi)角和定理先求∠OAB+∠OBA的值,再求∠AMB的值即可;(2)根據(jù)銳角三角比可得,根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,根據(jù)相似撒尿性的性質(zhì)求解即可;(3)當點與點在同一條直線上,有兩種情況:如圖3和圖4,然后根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理,可得AD的長.【詳解】(1)①∵,∴∠BOD=∠AOC,又∵,,∴△BOD≌△AOC,∴BD=AC,∴=1;②∵,∴∠OAB+∠OBA=140°,∵△BOD≌△AOC,∴∠CAO=∠DBO,∴∠CAO+∠OAB+∠ABM=∠DBO+∠OAB+∠ABM=∠OAB+∠OBA=140°,∴∠AMB=;(2)如圖2,,.理由如下:中,,,,同理得:,,,,,,∠CAO=∠DBO,∵∠BEO+∠DBO=90°,∴∠CAE+∠AEM=90°,∴∠AMB=90°;(3)∵∠A=30°,,∴OA==3.如圖3,當點D和點A在點O的同側(cè)時,∵,∴AD=3-2=2;如圖4,當點D和點A在點O的兩側(cè)時,∵,,OA=3∴AD=3+1=4.綜上可知,AD的長是2或4.【點睛】本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,相似三角形的判定與性質(zhì),解直角三角形,旋轉(zhuǎn)的性質(zhì),以及分類討論的數(shù)學(xué)思想,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運用類比的思想解決問題,本題是一道比較好的題目.15.如圖1,邊長為4的正方形與邊長為的正方形的頂點重合,點在對角線上.問題發(fā)現(xiàn)(1)如圖1,與的數(shù)量關(guān)系為______.類比探究(2)如圖2,將正方形繞點旋轉(zhuǎn)度().請問(1)中的結(jié)論還成立嗎?若不成立,請說明理由.拓展延伸(3)若為的中點,在正方形的旋轉(zhuǎn)過程中,當點,,在一條直線上時,線段的長度為______.解析:(1);(2)成立,見解析;(3)或【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,,,GH=HF=HE=HC,得出,,,由勾股定理求出,即可得出答案.【詳解】[問題發(fā)現(xiàn)]解:,理由如下:∵四邊形ABCD和四邊形CFEG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=CF,CE⊥GF,∴AB∥EF,∴,;故答案為:;[類比探究]解:上述結(jié)論還成立,理由如下:連接CE,如圖2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,,,∴△ACE∽△BCF,,;[拓展延伸]解:分兩種情況:①如圖3所示:連接CE交GF于H,∵四邊形ABCD和四邊形CFEG是正方形,∴AB=BC=4,AC=AB=4,GF=CE=CF,HF=HE=HC,∵點F為BC的中點,∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴,∴;②如圖4所示:連接CE交GF于H,同①得:GH=HF=HE=HC=,∴,∴;故答案為:或.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.16.如圖1,在中,,,點,分別在邊,上,,連接,點,,分別為,,的中點.(1)觀察猜想圖1中,線段與的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把繞點逆時針方向旋轉(zhuǎn)到圖2的位置,連接,,,判斷的形狀,并說明理由;(3)拓展延伸把繞點在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.解析:(1)PM=PN,;(2)等腰直角三角形,理由詳見解析;(3).【詳解】試題分析:(1)已知點,,分別為,,的中點,根據(jù)三角形的中位線定理可得,,,根據(jù)平行線的性質(zhì)可得∠DPM=∠DCE,∠NPD=∠ADC,在中,,,,可得BD=EC,∠DCE+∠ADC=90°,即可得PM=PN,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)易證△BAD≌△CAE,即可得BD=CE,∠ABD=∠ACE,根據(jù)三角形的中位線定理及平行線的性質(zhì)(方法可類比(1)的方法)可得PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形;(3)把繞點旋轉(zhuǎn)到如圖的位置,此時PN=(AD+AB)="7,"PM=(AE+AC)=7,且PN、PM的值最長,由(2)可知PM=PN,,所以面積的最大值為.試題解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋轉(zhuǎn)可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵點,分別為,的中點∴PM是△DCE的中位線∴PM=CE,且,同理可證PN=BD,且∴PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形.(3).考點:旋轉(zhuǎn)和三角形的綜合題.17.如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.解析:(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.18.(1)方法選擇如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.小穎認為可用截長法證明:在上截取,連接…小軍認為可用補短法證明:延長至點,使得…請你選擇一種方法證明.(2)類比探究(探究1)如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.(探究2)如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.(3)拓展猜想如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.解析:(1)方法選擇:證明見解析;(2)【探究1】:;【探究2】;(3)拓展猜想:.【分析】(1)方法選擇:根據(jù)等邊三角形的性質(zhì)得到∠ACB=∠ABC=60°,如圖①,在BD上截取DM=AD,連接AM,由圓周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根據(jù)全等三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(2)類比探究:如圖②,由BC是⊙O的直徑,得到∠BAC=90°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABC=∠ACB=45°,過A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根據(jù)全等三角形的性質(zhì)得到結(jié)論;【探究2】如圖③,根據(jù)圓周角定理和三角形的內(nèi)角和得到∠BAC=90°,∠ACB=60°,過A作AM⊥AD交BD于M,求得∠AMD=30°,根據(jù)直角三角形的性質(zhì)得到MD=2AD,根據(jù)相似三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(3)如圖④,由BC是⊙O的直徑,得到∠BAC=90°,過A作AM⊥AD交BD于M,求得∠MAD=90°,根據(jù)相似三角形的性質(zhì)得到BM=CD,DM=AD,于是得到結(jié)論.【詳解】(1)方法選擇:∵,∴,如圖①,在上截取,連接,∵,∴是等邊三角形,∴,∵,∵,∴,∴,∴;(2)類比探究:如圖②,∵是的直徑,∴,∵,∴,過作交于,∵,∴是等腰直角三角形,∴,,∴,∴,∵,∴,∴,∴;[探究2]如圖③,∵若是的直徑,,∴,,過作交于,∵,∴,∴,∵,,∴,∴,∴,∴;故答案為;(3)拓展猜想:;理由:如圖④,∵若是的直徑,∴,過作交于,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴.故答案為.【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),相似三角形的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南省長沙市雅禮集團2025屆九年級中考二模歷史試卷(含答案)
- 2025-2026學(xué)年江蘇省少常州市局前街小學(xué)教育集團四年級(上)期末數(shù)學(xué)試卷(含答案)
- 安全生產(chǎn)三管三必須培訓(xùn)課件
- 企業(yè)綠色生產(chǎn)與環(huán)保管理指南(標準版)
- 醫(yī)療機構(gòu)消毒劑使用與管理指南(標準版)
- 基于智慧校園的初中化學(xué)智能學(xué)習(xí)環(huán)境構(gòu)建與合作策略研究教學(xué)研究課題報告
- 互聯(lián)網(wǎng)金融的風(fēng)險與應(yīng)對策略
- 2025年病蟲害綜合防控十年生物農(nóng)藥評估報告
- 小學(xué)課堂注意力提升的課堂氛圍營造與優(yōu)化教學(xué)研究課題報告
- 初中物理教學(xué)中跨學(xué)科實驗設(shè)計與工程思維培養(yǎng)課題報告教學(xué)研究課題報告
- 民樂團管理制度
- 斷絕父母協(xié)議書范本
- 校家社協(xié)同育人專題家長培訓(xùn)
- 2024-2025學(xué)年北師大版八年級上學(xué)期期末復(fù)習(xí)數(shù)學(xué)測試題(含答案)
- 鎮(zhèn)衛(wèi)生院2025年工作總結(jié)及2025年工作計劃
- 2024年太陽能光伏發(fā)電項目EPC建設(shè)合同
- 煙葉復(fù)烤能源管理
- D701-1~3封閉式母線及橋架安裝(2004年合訂本)文檔
- 裝修陪跑合同范本
- JT-T-270-2019強制間歇式瀝青混合料攪拌設(shè)備
- DL-T5181-2017水電水利工程錨噴支護施工規(guī)范
評論
0/150
提交評論