版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆懷化市重點(diǎn)中學(xué)高三上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知,則的大小關(guān)系為()A. B. C. D.3.如圖在一個的二面角的棱有兩個點(diǎn),線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.4.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.85.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.6.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.7.已知,且,則()A. B. C. D.8.若函數(shù)有且只有4個不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.10.已知的面積是,,,則()A.5 B.或1 C.5或1 D.11.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.12.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則除以的余數(shù)是______.14.已知實(shí)數(shù),對任意,有,且,則______.15.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.16.設(shè),若函數(shù)有大于零的極值點(diǎn),則實(shí)數(shù)的取值范圍是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)18.(12分)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計(jì)Y大于零的概率.19.(12分)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線C的極坐標(biāo)方程是.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于兩點(diǎn)A,B,求線段的長.20.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.21.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.22.(10分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.2、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..3、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點(diǎn)睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于中檔題.4、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.5、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時,,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時,為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時,即為的中點(diǎn)時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.7、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.8、B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點(diǎn)即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點(diǎn)即可令,則令,遞減,且遞增,且時,有且只有2個零點(diǎn),只需故選:B【點(diǎn)睛】考查函數(shù)性質(zhì)的應(yīng)用以及根據(jù)零點(diǎn)個數(shù)確定參數(shù)的取值范圍,基礎(chǔ)題.9、D【解析】
本題首先可以通過題意畫出圖像并過點(diǎn)作垂線交于點(diǎn),然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)椋?,,,所以,三角形是直角三角形,因?yàn)椋?,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡得,,,,故選D?!军c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。10、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.11、B【解析】
利用復(fù)數(shù)的四則運(yùn)算即可求解.【詳解】由.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,需掌握復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.12、C【解析】
由于中正項(xiàng)與負(fù)項(xiàng)交替出現(xiàn),根據(jù)可排除選項(xiàng)A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
利用二項(xiàng)式定理得到,將89寫成1+88,然后再利用二項(xiàng)式定理展開即可.【詳解】,因展開式中后面10項(xiàng)均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點(diǎn)睛】本題考查二項(xiàng)式定理的綜合應(yīng)用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項(xiàng)式,并將它展開分析,本題是一道基礎(chǔ)題.14、-1【解析】
由二項(xiàng)式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識的理解掌握水平.15、【解析】
設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,如圖所示因?yàn)椋?,所以,,,又二面角的大小為,則,,所以,設(shè)外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結(jié)合,建立關(guān)于球的半徑的方程,本題計(jì)算量較大,是一道難題.16、【解析】
先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【詳解】因?yàn)?,所以,令得,因?yàn)楹瘮?shù)有大于0的極值點(diǎn),所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問題,極值點(diǎn)為導(dǎo)數(shù)的變號零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;(Ⅱ)可通過必要性探路,當(dāng)時,由知,又由于,則,當(dāng),,結(jié)合零點(diǎn)存在定理可判斷必存在使得,得,,化簡得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當(dāng)時,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;則.綜上,的最大值為3.【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題18、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時,需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時,需求量為300,求出Y=300元;當(dāng)溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時,Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時,需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計(jì)Y大于零的概率P.【點(diǎn)睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.19、(1)l:,C:;(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;
(2)由(1)可得曲線是圓,求出圓心坐標(biāo)及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程施工物資合同協(xié)議
- 如何簽訂老于合同協(xié)議
- 客人委托買藥合同范本
- 承包林業(yè)工程合同范本
- 閉區(qū)間二次函數(shù)求最值教案(2025-2026學(xué)年)
- 國際金融國際收支培訓(xùn)講學(xué)教案(2025-2026學(xué)年)
- 電腦組裝維護(hù)教案(2025-2026學(xué)年)
- 部編人教版三年級語文下冊課燕子教案(2025-2026學(xué)年)
- 新型標(biāo)準(zhǔn)化菜市場商業(yè)計(jì)劃書教案
- 難溶電解質(zhì)的溶解平衡應(yīng)用原卷版教案(2025-2026學(xué)年)
- 加氫裂化裝置技術(shù)問答
- 廣東省東莞市東華中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末考試試題含解析
- 關(guān)于安吉物流市場的調(diào)查報(bào)告
- 抑郁病診斷證明書
- 維克多高中英語3500詞匯
- 病理生理學(xué)復(fù)習(xí)重點(diǎn)縮印
- 第五屆全國輔導(dǎo)員職業(yè)能力大賽案例分析與談心談話試題(附答案)
- 《大數(shù)的認(rèn)識》復(fù)習(xí)教學(xué)設(shè)計(jì)
- GB/T 3513-2018硫化橡膠與單根鋼絲粘合力的測定抽出法
- GB/T 34590.3-2017道路車輛功能安全第3部分:概念階段
- 統(tǒng)編教材部編人教版小學(xué)語文習(xí)作單元教材解讀培訓(xùn)課件:統(tǒng)編小語四-六年級習(xí)作梳理解讀及教學(xué)建議
評論
0/150
提交評論