版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東德州一中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過拋物線的焦點(diǎn)作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.642.雙曲線的漸近線方程為()A. B.C. D.3.已知等比數(shù)列的前3項(xiàng)和為3,,則()A. B.4C. D.14.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.5.對(duì)于圓上任意一點(diǎn)的值與x,y無關(guān),有下列結(jié)論:①當(dāng)時(shí),r有最大值1;②在r取最大值時(shí),則點(diǎn)的軌跡是一條直線;③當(dāng)時(shí),則.其中正確的個(gè)數(shù)是()A.3 B.2C.1 D.06.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離7.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.788.已知,為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足,那么點(diǎn)P到x軸的距離為()A. B.C. D.9.南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,則第十層球的個(gè)數(shù)為()A.45 B.55C.90 D.11010.已知向量,,且,則值是()A. B.C. D.11.已知等差數(shù)列且,則數(shù)列的前13項(xiàng)之和為()A.26 B.39C.104 D.5212.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點(diǎn)作直線,直線與連接兩點(diǎn)線段總有公共點(diǎn),則直線的斜率的取值范圍是________14.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)15.記為等差數(shù)列的前n項(xiàng)和.若,則__________16.甲、乙兩名學(xué)生通過某次聽力測(cè)試的概率分別為和,且是否通過聽力測(cè)試相互獨(dú)立,兩人同時(shí)參加測(cè)試,其中有且只有一人能通過的概率是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為等差數(shù)列,公差,前項(xiàng)和為,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)已知數(shù)列和滿足,(1)若,求的通項(xiàng)公式;(2)若,,證明為等差數(shù)列,并求和的通項(xiàng)公式19.(12分)已知集合,設(shè)(1)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍;(2)若?q是?p的必要不充分條件,求實(shí)數(shù)a的取值范圍20.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(diǎn)(1)求證:平面平面;(2)求二面角的正切值21.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點(diǎn).(1)證明:直線面DEF;(2)求二面角的余弦值.22.(10分)已知,,分別為三個(gè)內(nèi)角,,的對(duì)邊,.(Ⅰ)求;(Ⅱ)若=2,的面積為,求,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo),分別設(shè)出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點(diǎn),設(shè)直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當(dāng)且僅當(dāng),即時(shí)取等號(hào).所以的最小值為.故選:B2、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點(diǎn)睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單的幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題3、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項(xiàng)公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項(xiàng)和為3,故,即,解得故選:D4、A【解析】分析可知對(duì)任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知,對(duì)任意的恒成立,則,當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.5、B【解析】可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無關(guān),圓在兩直線內(nèi)部,則,的距離為,則,,對(duì)于①,當(dāng)時(shí),r有最大值1,得出結(jié)論;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,得出結(jié)論;對(duì)于③當(dāng)時(shí),則得出結(jié)論.【詳解】設(shè),故可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無關(guān),可知直線平移時(shí),點(diǎn)與直線,的距離之和均為,的距離,即此時(shí)圓在兩直線內(nèi)部,,的距離為,則,對(duì)于①,當(dāng)時(shí),r有最大值1,正確;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,正確;對(duì)于③當(dāng)時(shí),則即,解得或,故錯(cuò)誤.故正確結(jié)論有2個(gè),故選:B.6、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A7、D【解析】由等比數(shù)列的性質(zhì)直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質(zhì)可得:由,解得:;由可得:,所以.故選:D8、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個(gè)焦點(diǎn),設(shè)焦距為,,點(diǎn)P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點(diǎn)P到x軸的距離,則,故選:D【點(diǎn)睛】本題考查雙曲線的性質(zhì),難度不大.9、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達(dá)出來,第層有個(gè)球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個(gè)球;第二層有個(gè)球;第三層有個(gè)球,則根據(jù)規(guī)律可知:第層有個(gè)球設(shè)第層的小球個(gè)數(shù)為,則有:故第十層球的個(gè)數(shù)為:故選:10、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.11、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件可得的值,再由等差數(shù)列前項(xiàng)和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項(xiàng)之和為,故選:A12、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過程二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出的斜率,結(jié)合圖形可得結(jié)論【詳解】,,而,因此,故答案為:14、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進(jìn)而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.15、【解析】因?yàn)槭堑炔顢?shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】是等差數(shù)列,且,設(shè)等差數(shù)列的公差根據(jù)等差數(shù)列通項(xiàng)公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項(xiàng)和公式:可得:.故答案:.【點(diǎn)睛】本題主要考查了求等差數(shù)列的前項(xiàng)和,解題關(guān)鍵是掌握等差數(shù)列的前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.16、##0.5【解析】分兩種情況,結(jié)合相互獨(dú)立事件公式即可求解.【詳解】記甲,乙通過聽力測(cè)試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)成等比數(shù)列,有,即求解.(2)由(1)可得,,∴,再利用裂項(xiàng)相消法求和.【詳解】(1)由成等比數(shù)列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構(gòu)造等比數(shù)列求的通項(xiàng)公式;(2)先由已知得,先分別求出,的通項(xiàng)公式,然后合并可得的通項(xiàng)公式,進(jìn)而可得的通項(xiàng)公式【小問1詳解】當(dāng),時(shí),,所以,即,整理得,所以是以為首項(xiàng),為公比的等比數(shù)列故,即【小問2詳解】當(dāng)時(shí),由,,得,所以因?yàn)?,所以,則是以為首項(xiàng),2為公差的等差數(shù)列,,;是以為首項(xiàng),2為公差的等差數(shù)列,,綜上所述,所以,,故是以2為首項(xiàng),1為公差的等差數(shù)列當(dāng)時(shí),,且滿足,所以19、(1)(2)【解析】(1)先解出集合A、B,然后根據(jù)p是q的充分不必要條件列出不等式組求解.(2)?q是?p的必要不充分條件可知q是p的充分不必要條件,然后求解.【小問1詳解】解:由題意得:,p是q的充分不必要條件,所以集合A是集合B的真子集∴,即,所以實(shí)數(shù)a的取值范圍.【小問2詳解】?q是?p的必要不充分條件p是q的必要不充分條件,即q是p的充分不必要條件集合B是集合A的真子集∴,故實(shí)數(shù)a的取值范圍為20、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點(diǎn),DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點(diǎn),DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz:則,則設(shè)為平面BDM的法向量,則,取,取平面BCD的法向量為,設(shè)二面角的大小為θ,則,∴.21、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點(diǎn),為軸,豎直向上為軸建立空間直角坐標(biāo)系,利用向量法計(jì)算與平面的法向量的數(shù)量積為0即可得證;(2)分別計(jì)算出平面和平面的法向量,然后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險(xiǎn)小活動(dòng)策劃方案(3篇)
- 大秦古箏活動(dòng)策劃方案(3篇)
- 電務(wù)施工方案措施(3篇)
- 冬季車輛施工方案(3篇)
- 展品活動(dòng)拍攝方案策劃(3篇)
- 黑車衣施工方案(3篇)
- 旅游景點(diǎn)服務(wù)規(guī)范與標(biāo)準(zhǔn)(標(biāo)準(zhǔn)版)
- 頤和園旅游景區(qū)營銷方案
- 2025年中職(水文地質(zhì)與工程地質(zhì)勘查)水質(zhì)勘查階段測(cè)試題及答案
- 2025年大學(xué)大二(歷史學(xué))歷史學(xué)創(chuàng)新項(xiàng)目考核測(cè)試題及解析
- 綠化養(yǎng)護(hù)中病蟲害重點(diǎn)難點(diǎn)及防治措施
- 學(xué)堂在線 雨課堂 學(xué)堂云 工程倫理2.0 章節(jié)測(cè)試答案
- 生態(tài)旅游區(qū)建設(shè)場(chǎng)地地質(zhì)災(zāi)害危險(xiǎn)性評(píng)估報(bào)告
- 網(wǎng)絡(luò)傳播法規(guī)(自考14339)復(fù)習(xí)題庫(含答案)
- 民辦學(xué)校退費(fèi)管理制度
- T/CIE 115-2021電子元器件失效機(jī)理、模式及影響分析(FMMEA)通用方法和程序
- KubeBlocks把所有數(shù)據(jù)庫運(yùn)行到K8s上
- 廣東省江門市蓬江區(qū)2025年七年級(jí)上學(xué)期語文期末考試試卷及答案
- 蘇州市施工圖無障礙設(shè)計(jì)專篇參考樣式(試行)2025
- 等腰三角形重難點(diǎn)題型歸納(七大類型)原卷版-2024-2025學(xué)年北師大版八年級(jí)數(shù)學(xué)下冊(cè)重難點(diǎn)題型突破
- 臨時(shí)用電變壓器安裝方案
評(píng)論
0/150
提交評(píng)論