上海市交通大學(xué)附屬中學(xué)嘉定分校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁
上海市交通大學(xué)附屬中學(xué)嘉定分校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁
上海市交通大學(xué)附屬中學(xué)嘉定分校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁
上海市交通大學(xué)附屬中學(xué)嘉定分校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁
上海市交通大學(xué)附屬中學(xué)嘉定分校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市交通大學(xué)附屬中學(xué)嘉定分校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天2.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.3.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B.C. D.4.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或5.若命題為“,”,則為()A., B.,C., D.,6.?dāng)?shù)列滿足,,,則數(shù)列的前8項(xiàng)和為()A.25 B.26C.27 D.287.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點(diǎn)數(shù)分別記為a,b,則直線到原點(diǎn)的距離不超過1的概率是()A. B.C. D.8.觀察數(shù)列,(),,()的特點(diǎn),則括號(hào)中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.9.已知滿約束條件,則的最大值為()A.0 B.1C.2 D.310.已知數(shù)列中,,則()A.2 B.C. D.11.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.拋物線上的一點(diǎn)到其焦點(diǎn)的距離等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則函數(shù)在上的最大值為_______14.拋物線()上的一點(diǎn)到其焦點(diǎn)F的距離______.15.甲、乙兩名運(yùn)動(dòng)員5場(chǎng)比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則甲、乙兩組數(shù)據(jù)的中位數(shù)是______.16.直線過拋物線的焦點(diǎn)F,且與C交于A,B兩點(diǎn),則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在棱長(zhǎng)為的正方體中,、分別為線段、的中點(diǎn).(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓的焦距為,左、右焦點(diǎn)分別為,為橢圓上一點(diǎn),且軸,,為垂足,為坐標(biāo)原點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點(diǎn)的直線(斜率不為)與橢圓交于兩點(diǎn),為軸正半軸上一點(diǎn),且,求點(diǎn)的坐標(biāo)20.(12分)寫出下列命題的逆命題、否命題以及逆否命題:(1)若,則;(2)已知為實(shí)數(shù),若,則21.(12分)已知圓與x軸交于A,B兩點(diǎn),P是該圓上任意一點(diǎn),AP,PB的延長(zhǎng)線分別交直線于M,N兩點(diǎn).(1)若弦AP長(zhǎng)為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當(dāng)圓C面積最小時(shí),求此時(shí)圓C的方程.22.(10分)已知等比數(shù)列的前項(xiàng)和為,且,.(1)求的通項(xiàng)公式;(2)求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過程2、A【解析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A3、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A4、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.5、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B6、C【解析】根據(jù)通項(xiàng)公式及求出,從而求出前8項(xiàng)和.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,則數(shù)列的前8項(xiàng)和為.故選:C7、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點(diǎn)的距離不超過1,則所以當(dāng)時(shí),可以為5,6當(dāng)時(shí),可以為4,5,6當(dāng)時(shí),可以為4,5,6當(dāng)時(shí),可以為2,3,4,5,6當(dāng)時(shí),可以為1,2,3,4,5,6當(dāng)時(shí),可以為1,2,3,4,5,6滿足的共有25種結(jié)果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點(diǎn)數(shù)分別記為a,b,共有種結(jié)果所以滿足條件的概率為故選:C8、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D9、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標(biāo)函數(shù),即表示斜率為2,縱截距為的平行直線系,作出直線,平移直線到直線,使其過點(diǎn)A時(shí),的縱截距最小,最大,則,所以的最大值為1.故選:B10、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.11、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A12、C【解析】由點(diǎn)的坐標(biāo)求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點(diǎn),的大小求出在上的最大值.【詳解】因?yàn)?,則,令,即時(shí),函數(shù)單調(diào)遞增.令,即時(shí),函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點(diǎn)為,,即最大值為.故答案為:.14、【解析】將點(diǎn)坐標(biāo)代入方程中可求得拋物線的方程,從而可得到焦點(diǎn)坐標(biāo),進(jìn)而可求出【詳解】解:為拋物線上一點(diǎn),即有,,拋物線的方程為,焦點(diǎn)為,即有.故答案為:5.15、【解析】先由極差以及平均數(shù)得出,進(jìn)而得出中位數(shù).【詳解】由可得,,,因?yàn)橐业梅值钠骄禐?4,所以,所以甲、乙兩組數(shù)據(jù)的中位數(shù)是.故答案為:16、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達(dá)定理及即可求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,又直線過拋物線的焦點(diǎn)F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個(gè)法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因?yàn)槠矫妫?,平面,,所以,直線到平面的距離為.18、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對(duì)任意的恒成立,構(gòu)造函數(shù),其中,利用導(dǎo)數(shù)求出函數(shù)在上的最小值,由此可求得實(shí)數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域?yàn)椋?因?yàn)?,由,可?①當(dāng)時(shí),由可得,由可得.此時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當(dāng)時(shí),由可得,由可得,此時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當(dāng)時(shí),函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當(dāng)且時(shí),由,可得,令,其中,.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,則,.19、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達(dá)定理求出和,利用幾何關(guān)系可知,即可得,將韋達(dá)定理代入化簡(jiǎn)即可求得點(diǎn)坐標(biāo).【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè)直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.20、(1)答案見解析(2)答案見解析【解析】(1)(2)根據(jù)逆命題、否命題以及逆否命題的定義作答即可;【小問1詳解】解:逆命題:若,則;否命題:若,則;逆否命題:若,則【小問2詳解】解:逆命題:已知為實(shí)數(shù),若,則;否命題:已知為實(shí)數(shù),若或,則;逆否命題:已知實(shí)數(shù),若,則或21、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進(jìn)行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標(biāo)準(zhǔn)方程進(jìn)行求解即可.【小問1詳解】在方程中,令,解得,或,因?yàn)锳P,PB的延長(zhǎng)線分別交直線于M,N兩點(diǎn),所以,圓心在x軸上,所以,因?yàn)椋?,所以有,?dāng)P在x軸上方時(shí),直線PB的斜率為:,所以直線PB的方程為:,當(dāng)P在x軸下方時(shí),直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設(shè)直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因?yàn)橥?hào),所以,當(dāng)且僅當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論