內(nèi)蒙古2026屆高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第1頁
內(nèi)蒙古2026屆高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第2頁
內(nèi)蒙古2026屆高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第3頁
內(nèi)蒙古2026屆高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第4頁
內(nèi)蒙古2026屆高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古2026屆高二數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.2.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.43.()A.-2 B.-1C.1 D.24.已知各項均為正數(shù)的等比數(shù)列滿足,若存在兩項,使得,則的最小值為()A.4 B.C. D.95.過雙曲線(,)的左焦點作圓:的兩條切線,切點分別為,,雙曲線的左頂點為,若,則雙曲線的漸近線方程為()A. B.C. D.6.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.7.方程表示的圖形是A.兩個半圓 B.兩個圓C.圓 D.半圓8.雙曲線的漸近線方程是()A. B.C. D.9.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.10.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.11.已知、分別為雙曲線的左、右焦點,且,點P為雙曲線右支一點,為的內(nèi)心,若成立,給出下列結(jié)論:①點的橫坐標為定值a;②離心率;③;④當軸時,上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④12.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱軸截面是邊長為4的正方形,則圓柱的側(cè)面積為______________

.14.已知橢圓:的左右焦點分別為,為橢圓上的一點,與橢圓交于.若△的內(nèi)切圓與線段在其中點處相切,與切于,則橢圓的離心率為_______15.某工廠年前加緊手套生產(chǎn),設(shè)該工廠連續(xù)5天生產(chǎn)的手套數(shù)依次為,,,,(單位:萬只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產(chǎn)手套______萬只16.設(shè)橢圓標準方程為,則該橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線上,且過點(1)求圓的方程;(2)已知直線經(jīng)過原點,并且被圓截得的弦長為2,求直線l的方程.18.(12分)已知雙曲線()的一個焦點是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個不同的點,線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求直線的方程19.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.20.(12分)如圖,已知圓錐SO底面圓的半徑r=1,直徑AB與直徑CD垂直,母線SA與底面所成的角為.(1)求圓錐SO的側(cè)面積;(2)若E為母線SA的中點,求二面角E-CD-B的大小.(結(jié)果用反三角函數(shù)值表示)21.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點圖觀察散點圖,兩個變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.001),并用其估計產(chǎn)量為10千件時每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標準差s作為的估計值,若非原料成本y在之外,說明該成本異常,并稱落在之外的成本為異樣成本,此時需尋找出現(xiàn)異樣成本的原因.利用估計值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:,,相關(guān)系數(shù).22.(10分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當且僅當時,等號成立,所以,.故選:A.2、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設(shè)公差為d,由,,得,解得.故選:B3、A【解析】利用微積分基本定理計算得到答案.【詳解】.故選:.【點睛】本題考查了定積分的計算,意在考查學生的計算能力.4、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因為各項均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當且僅當,即m=2,n=4時,等號成立故的最小值等于.故選:C【點睛】方法點睛:本題主要考查等比數(shù)列的通項公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個技巧,可以優(yōu)化解題,提高解題效率.5、C【解析】根據(jù),,可以得到,從而得到與的關(guān)系式,再由,,的關(guān)系,進而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因為雙曲線的漸近線方程為,即為故選:C6、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關(guān)系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.7、D【解析】其中,再兩邊同時平方,由此確定圖形【詳解】根據(jù)題意,,再兩邊同時平方,由此確定圖形為半圓.故選:D【點睛】幾何圖像中要注意與方程式是一一對應(yīng),故方程的中未知數(shù)的的取值范圍對應(yīng)到圖形中的坐標的取值范圍8、A【解析】先將雙曲線的方程化為標準方程得,再根據(jù)雙曲線漸近線方程求解即可.【詳解】解:將雙曲線的方程化為標準方程得,所以,所以其漸近線方程為:,即.故選:A.9、A【解析】由三角形內(nèi)角及正弦函數(shù)的性質(zhì)判斷、的真假,應(yīng)用換元法令,結(jié)合對勾函數(shù)的性質(zhì)確定的值域即知、的真假,根據(jù)各選項復(fù)合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.10、D【解析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【詳解】∵,∴,故,故選:D11、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對選項逐個分析判斷即可【詳解】對于①,設(shè)內(nèi)切圓與的切點分別為,則由切線長定理可得,因為,,所以,所以點的坐標為,所以點的橫坐標為定值a,所以①正確,對于②,因為,所以,化簡得,即,解得,因為,所以,所以②正確,對于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因為,,所以,所以,所以③正確,對于④,當軸時,可得,此時,所以,所以④錯誤,故選:C12、B【解析】根據(jù)程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由圓柱軸截面的性質(zhì)知:圓柱體的高為,底面半徑為,根據(jù)圓柱體的側(cè)面積公式,即可求其側(cè)面積.【詳解】由圓柱的軸截面是邊長為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側(cè)面積為.故答案為:.14、【解析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.15、2【解析】結(jié)合方差、平均數(shù)的公式列方程,化簡求得正確答案.【詳解】依題意設(shè),則,.故答案為:16、##【解析】求出、的值,即可求得橢圓的離心率.【詳解】在橢圓中,,,則,因此,該橢圓的離心率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)題意設(shè)圓心坐標為,進而得,解得,故圓的方程為(2)分直線的斜率存在和不存在兩種情況討論求解即可.【詳解】(1)圓的圓心在直線上,設(shè)所求圓心坐標為∵過點,解得∴所求圓的方程為(2)直線經(jīng)過原點,并且被圓截得的弦長為2①當直線的斜率不存在時,直線的方程為,此時直線被圓截得的弦長為2,滿足條件;②當直線的斜率存在時,設(shè)直線的方程為,由于直線被圓截得的弦長為,故圓心到直線的距離為故由點到直線的距離公式得:解得,所以直線l的方程為綜上所述,則直線l的方程為或【點睛】易錯點點睛:本題第二問在解題的過程中要注意直線斜率不存在情況的討論,即分直線的斜率存在和不存在兩種,避免在解題的過程中忽視斜率不存在的情況致錯,考查運算求解能力與分類討論思想,是中檔題.18、(1)(2)【解析】(1)由已知及離心率公式直接計算;(2)設(shè)直線方程為,聯(lián)立方程組可得中點及中垂線方程,根據(jù)三角形面積可得的值.【小問1詳解】解:由已知得,,所以,,所以所求雙曲線方程為.【小問2詳解】解:設(shè)直線的方程為,點,聯(lián)立整理得.(*)設(shè)的中點為,則,,所以線段垂直平分線的方程為,即,與坐標軸的交點分別為,,可得,得,,此時(*)的判別式,故直線的方程為.19、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即20、(1)(2)【解析】(1)先根據(jù)母線與底面的夾角求出圓錐的母線長,然后根據(jù)圓錐的側(cè)面積公式即可(2)利用三角形的中位線性質(zhì),先求出二面角,然后利用二面角與二面角的互補關(guān)系即可求得【小問1詳解】根據(jù)母線SA與底面所成的角為,且底面圓的半徑可得:則圓錐的側(cè)面積為:【小問2詳解】如圖所示,過點作底面的垂線交于,連接,則為的中位線則有:,,易知,則,又直徑AB與直徑CD垂直,則則有:為二面角可得:又二面角與二面角互為補角,則二面角的余弦值為故二面角大小為21、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元,(3)見解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(2)求出與的相關(guān)系數(shù),通過比較,可得用反比例函數(shù)模型擬合效果更好,然后將代入回歸方程中可求結(jié)果(3)利用已知數(shù)據(jù)求出樣本標準差s,從而可得非原料成本y服從正態(tài)分布,再計算,然后各個數(shù)據(jù)是否在此范圍內(nèi),從而可得結(jié)論【小問1詳解】令,則可轉(zhuǎn)化為,因為,所以,所以,所以,所以y關(guān)于x的回歸方程為【小問2詳解】與的相關(guān)系數(shù)為因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論