版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆長春市第十一中學(xué)高二上數(shù)學(xué)期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列中,,則()A.2 B.C. D.2.()A.-2 B.0C.2 D.33.《周髀算經(jīng)》是中國最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺4.已知點P是雙曲線上的動點,過原點O的直線l與雙曲線分別相交于M、N兩點,則的最小值為()A.4 B.3C.2 D.15.已知雙曲線,則雙曲線的離心率為()A. B.C. D.6.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.7.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為A.2 B.3C.4 D.58.橢圓以坐標軸為對稱軸,經(jīng)過點,且長軸長是短軸長的倍,則橢圓的標準方程為()A. B.C.或 D.或9.若,則n的值為()A.7 B.8C.9 D.1010.已知等差數(shù)列,若,,則()A.1 B.C. D.311.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件12.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.都有可能二、填空題:本題共4小題,每小題5分,共20分。13.平面內(nèi)n條直線兩兩相交,且任意三條直線不過同一點,將其交點個數(shù)記為,若規(guī)定,則,,_________,_________,(用含n的式子表示)14.已知直線l:和圓C:,過直線l上一點P作圓C的一條切線,切點為A,則的最小值為______15.過圓上一點的圓的切線的一般式方程為________16.直線與圓相交于兩點M,N,若滿足,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和18.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量a至少應(yīng)達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.19.(12分)已知數(shù)列的前n項和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項和為,求證:.20.(12分)已知數(shù)列是等差數(shù)列,其前項和為,且,.(1)求;(2)記數(shù)列的前項和為,求當取得最小值時的的值.21.(12分)已知點到兩個定點的距離比為(1)求點的軌跡方程;(2)若過點的直線被點的軌跡截得的弦長為,求直線的方程22.(10分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)過點作圓C的切線,求切線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.2、C【解析】根據(jù)定積分公式直接計算即可求得結(jié)果【詳解】由故選:C3、D【解析】根據(jù)題意轉(zhuǎn)化為等差數(shù)列,求首項.【詳解】設(shè)冬至的日影長為,雨水的日影長為,根據(jù)等差數(shù)列的性質(zhì)可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D4、C【解析】根據(jù)雙曲線的對稱性可得為的中點,即可得到,再根據(jù)雙曲線的性質(zhì)計算可得;【詳解】解:根據(jù)雙曲線的對稱性可知為的中點,所以,又在上,所以,當且僅當在雙曲線的頂點時取等號,所以故選:C5、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.6、D【解析】設(shè)橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關(guān)于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關(guān)鍵點睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.7、D【解析】拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學(xué)生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.8、C【解析】分情況討論焦點所在位置及橢圓方程.【詳解】當橢圓的焦點在軸上時,由題意過點,故,,橢圓方程為,當橢圓焦點在軸上時,,,橢圓方程為,故選:C.9、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計算作答【詳解】因為,則由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D10、C【解析】利用等差數(shù)列的通項公式進行求解.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得.故選:C.11、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C12、A【解析】求出圓心到直線的距離,然后與圓的半徑進行大小比較即可求解.【詳解】解:圓的圓心,,因為圓心到直線的距離,所以直線與圓的位置關(guān)系是相交,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、①.6;②..【解析】利用第條直線與前條直線相交有個交點得出與的關(guān)系后可得結(jié)論【詳解】第4條直線與前三條直線有3個交點,因此,同理,由此得到第條直線與前條直線相交有個交點,所以,即所以故答案為:6;14、1【解析】求出圓C的圓心坐標、半徑,再借助圓的切線性質(zhì)及勾股定理列式計算作答.【詳解】圓C:,圓心為,半徑,點C到直線l的距離,由圓的切線性質(zhì)知:,當且僅當,即點P是過點C作直線l的垂線的垂足時取“=”,所以的最小值為1故答案為:115、【解析】求出過切線的半徑所在直線斜率,由垂直關(guān)系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點睛】本題考查求過圓上一點的圓的切線方程,利用切線性質(zhì)求得斜率后易得直線方程16、【解析】由點到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【詳解】因為,所以,所以,圓心到直線的距離因為,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=n(2)【解析】(1)由已知條件可得(d+2)2=2d+7,從而可求出公差,進而可求得數(shù)列的通項公式,(2)由(1)得,然后利用錯位相減法求【小問1詳解】因a1,a2+1,a3+6成等比數(shù)列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小問2詳解】因為,所以,所以,所以所以18、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設(shè)每件定價為x元,可得提高價格后的銷售量,根據(jù)銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設(shè)每件定價為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價最多為40元.(2)依題意知:當x>25時,不等式有解,等價于x>25時,有解.由于,當且僅當,即x=30時等號成立,所以a≥10.2.當該商品改革后的銷售量a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.19、(1)證明見解析;(2)證明見解析.【解析】(1)應(yīng)用的關(guān)系,結(jié)合構(gòu)造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結(jié)論.(2)由(1)得,再應(yīng)用錯位相減法求,即可證結(jié)論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.20、(1)(2)10或11【解析】(1)利用通項公式以及求和公式列出方程組得出;(2)先求出數(shù)列通項公式,再根據(jù)得出取得最小值時的的值.【小問1詳解】設(shè)等差數(shù)列的公差為,則由得解得所以.【小問2詳解】因為,所以,則.令,解得,由于,故或,故當前項和取得最小值時的值為10或11.21、(1)(2)或【解析】(1)設(shè)出,表達出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時是否符合要求,再考慮斜率存在時,設(shè)出直線方程,表達出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當直線斜率不存在時,直線為,此時弦長為,滿足題意;當直線斜率存在時,設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時直線的方程為,綜上:直線的方程為或.22、(1)(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑臨時用工合同范本
- 廣告獨家代理合同范本
- 尚品宅配訂貨合同范本
- 建筑工地相關(guān)合同范本
- 工程水電勞務(wù)合同范本
- 技術(shù)服開發(fā)類合同范本
- 工作室員工合同協(xié)議書
- 工程主合同與補充協(xié)議
- 學(xué)校勞務(wù)合同協(xié)議模板
- 四年級科學(xué)下冊保護土壤青島版教案
- 期末綜合質(zhì)量檢測卷(試題)-2025-2026學(xué)年 六年級上冊數(shù)學(xué)西師大版
- 2025年納稅籌劃機考題庫及答案
- 匯能控股集團校招題庫及答案
- 噴塑委外合同范本
- 高二化學(xué)上學(xué)期期末試題帶答案解析
- 高標準農(nóng)田建設(shè)培訓(xùn)課件
- 解答題 概率與統(tǒng)計(專項訓(xùn)練12大題型+高分必刷)(原卷版)2026年高考數(shù)學(xué)一輪復(fù)習講練測
- 2024-2025學(xué)年北京市海淀區(qū)第二十中學(xué)高二上學(xué)期期末物理試題(含答案)
- 2025至2030中國IT培訓(xùn)行業(yè)項目調(diào)研及市場前景預(yù)測評估報告
- 2025年國家開放大學(xué)《普通心理學(xué)(研究生)》期末考試參考題庫及答案解析
- 多聯(lián)機空調(diào)安裝施工方案
評論
0/150
提交評論