安徽省合肥高升學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
安徽省合肥高升學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
安徽省合肥高升學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
安徽省合肥高升學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
安徽省合肥高升學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省合肥高升學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件2.甲烷是一種有機(jī)化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個(gè)氫原子之間的距離(H-H鍵長)相等,碳原子到四個(gè)氫原子的距離(C-H鍵長)均相等,任意兩個(gè)H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個(gè)氫原子為頂點(diǎn)的四面體的體積為()A. B.C. D.3.下列橢圓中,焦點(diǎn)坐標(biāo)是的是()A. B.C. D.4.已知拋物線的焦點(diǎn)為F,點(diǎn)P為該拋物線上的動(dòng)點(diǎn),若,則當(dāng)最大時(shí),()A. B.1C. D.25.曲線的一個(gè)焦點(diǎn)F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標(biāo)原點(diǎn),若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.6.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.7.若正三棱柱的所有棱長都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.8.已知函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.9.已知等比數(shù)列中,,前三項(xiàng)之和,則公比的值為()A1 B.C.1或 D.或10.已知三棱柱中,,,D點(diǎn)是線段上靠近A的一個(gè)三等分點(diǎn),則()A. B.C. D.11.設(shè)F是雙曲線的左焦點(diǎn),,P是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.5 B.C. D.912.觀察:則第行的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.千年一遇對稱日,萬事圓滿在今朝,年月日又是一個(gè)難得的“世界完全對稱日”(公歷紀(jì)年日期中數(shù)字左右完全對稱的日期).數(shù)學(xué)上把這樣的對稱自然數(shù)叫回文數(shù),兩位數(shù)的回文數(shù)共有個(gè)(),其中末位是奇數(shù)的又叫做回文奇數(shù),則在內(nèi)的回文奇數(shù)的個(gè)數(shù)為___14.一條光線經(jīng)過點(diǎn)射到直線上,被反射后經(jīng)過點(diǎn),則入射光線所在直線的方程為___________.15.設(shè)是定義在上的可導(dǎo)函數(shù),且滿足,則不等式解集為_______16.已知正方體的棱長為為的中點(diǎn),為面內(nèi)一點(diǎn).若點(diǎn)到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點(diǎn)分別為,短軸的一個(gè)端點(diǎn)到的距離為,且橢圓過點(diǎn)過且不與兩坐標(biāo)軸平行的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱.(1)求橢圓的方程(2)當(dāng)直線的斜率為1時(shí),求的面積;(3)若點(diǎn),求證:三點(diǎn)共線.18.(12分)如圖,底面是矩形的直棱柱中,;(1)求證:平面;(2)求直線與平面所成角的大?。?9.(12分)已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高所在直線方程為.求:(1)頂點(diǎn)的坐標(biāo);(2)直線的方程.20.(12分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(diǎn)(1)求橢圓的方程;(2)在x軸上是否存在一點(diǎn)M,使得過F的任意一條直線l與橢圓的兩個(gè)交點(diǎn)A,B,恒有,若存在求出M的坐標(biāo),若不存在,說明理由21.(12分)已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),如圖,過點(diǎn)任作兩條互相垂直的直線,,分別交拋物線于,,,四點(diǎn),,分別為,的中點(diǎn).(1)求的值;(2)求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(3)設(shè)直線交拋物線于,兩點(diǎn),試求的最小值.22.(10分)在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離比到軸的距離大,設(shè)動(dòng)點(diǎn)的軌跡為曲線,分別過曲線上的兩點(diǎn),做曲線的兩條切線,且交于點(diǎn),與直線交于兩點(diǎn)(1)求曲線的方程;(2)求面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時(shí),成立,反過來,當(dāng)時(shí),例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查充分不必要條件的判斷,重點(diǎn)考查基本判斷方法,屬于基礎(chǔ)題型.2、A【解析】利用余弦定理求得,計(jì)算出正四面體的高,從而計(jì)算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A3、B【解析】根據(jù)給定條件逐一分析各選項(xiàng)中的橢圓焦點(diǎn)即可判斷作答.【詳解】對于A,橢圓的焦點(diǎn)在x軸上,A不是;對于B,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,B是;對于C,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,C不是;對于D,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,D不是.故選:B4、B【解析】根據(jù)拋物線的定義,結(jié)合換元法、配方法進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)P為該拋物線上的動(dòng)點(diǎn),所以點(diǎn)P的坐標(biāo)設(shè)為,拋物線的焦點(diǎn)為F,所以,拋物線的準(zhǔn)線方程為:,因此,令,,當(dāng)時(shí),即當(dāng)時(shí),有最大值,最大值為1,此時(shí).故選:B5、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A6、C【解析】設(shè)等比數(shù)列的公比為,可得出,即可得解.【詳解】設(shè)等比數(shù)列的公比為,可得出.故選:C.7、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個(gè)法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時(shí)首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問題時(shí),首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時(shí)要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯(cuò)誤8、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個(gè)零點(diǎn),等價(jià)于函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),,求導(dǎo),令,得當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;故當(dāng)時(shí),函數(shù)取得極小值;當(dāng)時(shí),函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.9、C【解析】根據(jù)條件列關(guān)于首項(xiàng)與公比的方程組,即可解得公比,注意等比數(shù)列求和公式使用條件.【詳解】等比數(shù)列中,,前三項(xiàng)之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式以及基本量計(jì)算,考查基本分析求解能力,屬基礎(chǔ)題.10、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計(jì)算即可.【詳解】在三棱柱中,滿足,且,則,,D點(diǎn)是線段上靠近A的一個(gè)三等分點(diǎn),則,由向量的減法運(yùn)算得,.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在三棱柱中,,由向量的減法運(yùn)算得,再展開利用數(shù)量積運(yùn)算.11、B【解析】由雙曲線的的定義可得,于是將問題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點(diǎn)為,且點(diǎn)A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取得等號(hào).故選:B12、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)分類加法計(jì)數(shù)原理,結(jié)合題中定義、組合的定義進(jìn)行求解即可.【詳解】兩位數(shù)的回文奇數(shù)有,共個(gè),三位數(shù)的回文奇數(shù)有,四位數(shù)的回文奇數(shù)有,所以在內(nèi)的回文奇數(shù)的個(gè)數(shù)為,故答案為:14、【解析】先求點(diǎn)關(guān)于直線的對稱點(diǎn),連接,則直線即為所求.【詳解】設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為,則,解得,所以,又點(diǎn),所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡得入射光線所在直線的方程:.故答案為:.15、【解析】構(gòu)造函數(shù),結(jié)合題意求得,由此判斷出在上遞增,由此求解出不等式的解集.【詳解】令,,故函數(shù)在上單調(diào)遞增,不等式可化為,則,解得:【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16、##【解析】由題意可知,點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面建立平面直角坐標(biāo)系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時(shí),切點(diǎn)為點(diǎn),此時(shí)的面積最小,則三棱錐體積的最小【詳解】因?yàn)闉槊鎯?nèi)一點(diǎn),且點(diǎn)到面的距離與到直線的距離相等,所以點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標(biāo)系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時(shí)切點(diǎn)為,且的面積最小,因?yàn)辄c(diǎn)到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)證明見解析.【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)聯(lián)立直線和橢圓的方程求出弦長和三角形的高即得解;(3)聯(lián)立直線和橢圓的方程,得到韋達(dá)定理,再利用平面向量證明.【小問1詳解】解:由題得,所以橢圓方程為,因?yàn)闄E圓過點(diǎn)所以,所以所以橢圓的方程為.【小問2詳解】解:由題得,所以直線的方程為即,聯(lián)立直線和橢圓方程得,所以,點(diǎn)到直線的距離為.所以的面積為.【小問3詳解】解:設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得,設(shè),所以,由題得,,所以,所以,所以,又有公共點(diǎn),所以三點(diǎn)共線.18、(1)證明見解析(2)【解析】(1)通過證明和可得答案;(2)連接,則為直線與平面所成角的平面角,在直角三角形中計(jì)算即可.【小問1詳解】棱柱為直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小問2詳解】連接,面,則為直線與平面所成角的平面角在直角三角形中,則,,所以直線與平面所成角的大小為.19、(1);(2).【解析】(1)求出直線的方程,然后聯(lián)立直線、的方程,即可求得點(diǎn)的坐標(biāo);(2)設(shè),可求得線段的中點(diǎn)的坐標(biāo),將點(diǎn)的坐標(biāo)代入直線的方程,可求得的值,可得出點(diǎn)的坐標(biāo),進(jìn)而利用直線的斜率和點(diǎn)斜式可得出直線的方程.【小問1詳解】解:,所以,而,則,所以直線的方程為,由,解得,所以頂點(diǎn)的坐標(biāo)為.【小問2詳解】解:因?yàn)樵谥本€,所以可設(shè),由為線段的中點(diǎn),所以,將的坐標(biāo)代入直線的方程,所以,解得,所以.故,故直線的方程為,即.20、(1);(2)存在點(diǎn)M滿足條件,點(diǎn)M的坐標(biāo)為.【解析】(1)根據(jù)給定條件直接計(jì)算出即可求解作答.(2)假定存在點(diǎn),當(dāng)直線l與x軸不重合時(shí),設(shè)出l的方程,與橢圓C的方程聯(lián)立,借助、斜率互為相反數(shù)計(jì)算得解,再驗(yàn)證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點(diǎn)滿足條件,當(dāng)直線與x軸不重合時(shí),設(shè)l的方程為:,由消去x并整理得:,設(shè),則有,因,則直線、斜率互為相反數(shù),于是得:,整理得,即,則有,即,而m為任意實(shí)數(shù),則,當(dāng)直線l與x軸重合時(shí),點(diǎn)A,B為橢圓長軸的兩個(gè)端點(diǎn),點(diǎn)也滿足,所以存在點(diǎn)M滿足條件,點(diǎn)M的坐標(biāo)為.【點(diǎn)睛】思路點(diǎn)睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.21、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點(diǎn)坐標(biāo),從而可知拋物線的焦點(diǎn)坐標(biāo),進(jìn)而可得的值;(2)首先設(shè)出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標(biāo),令,可得直線過點(diǎn),再證明當(dāng),,,三點(diǎn)共線即可;(3)設(shè)出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達(dá)定理找出根的關(guān)系,再利用兩點(diǎn)間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點(diǎn)坐標(biāo)為,由于拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),故,即,;小問2詳解】由(1)知,拋物線的方程為,設(shè),,,,由題意,直線的斜率存在且設(shè)直線的方程為,代入可得,則,故,故的中點(diǎn)坐標(biāo)為,由,設(shè)直線的方程為,代入可得,則,故,可得的中點(diǎn)坐標(biāo)為,令得,此時(shí),故直線過點(diǎn),當(dāng)時(shí),,所以,,,三點(diǎn)共線,所以直線過定點(diǎn).【小問3詳解】設(shè),由題意直線的斜率存在,設(shè)直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論