廣東省廣州市增城區(qū)四校2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
廣東省廣州市增城區(qū)四校2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
廣東省廣州市增城區(qū)四校2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
廣東省廣州市增城區(qū)四校2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
廣東省廣州市增城區(qū)四校2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州市增城區(qū)四校2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.22.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.3.已知p:,那么p的一個充分不必要條件是()A. B.C. D.4.在等差數(shù)列中,,,則公差A.1 B.2C.3 D.45.如圖所示,在中,,,,AD為BC邊上的高,;若,則的值為()A. B.C. D.6.設AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則的值是()A. B.C. D.7.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.248.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.59.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.810.已知點到直線:的距離為1,則等于()A. B.C. D.11.已知直線,若異面,,則的位置關系是()A.異面 B.相交C.平行或異面 D.相交或異面12.若向量則()A. B.3C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將某校全體高一年級學生期末數(shù)學成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學生進行問卷調查,采用按成績分層隨機抽樣,則應抽取成績不少于60分的學生人數(shù)為_______________.14.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.15.定義在上的函數(shù)滿足:有成立且,則不等式的解集為__________16.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點,動點在圓錐底面內(包括圓周).若,則點形成的軌跡的長度為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸在軸上,長軸長為4,離心率為,(1)求橢圓的標準方程,并指出它的短軸長和焦距.(2)直線與橢圓交于兩點,求兩點的距離.18.(12分)已知拋物線:,直線過定點.(1)若與僅有一個公共點,求直線的方程;(2)若與交于A,B兩點,直線OA,OB(其中О為坐標原點)的斜率分別為,,試探究在,,,中,運算結果是否有為定值的?并說明理由.19.(12分)已知點是拋物線C:上的點,F(xiàn)為拋物線的焦點,且,直線l:與拋物線C相交于不同的兩點A,B.(1)求拋物線C的方程;(2)若,求k的值.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點F為棱PD的中點,二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.21.(12分)已知橢圓與橢圓有共同的焦點,且橢圓經過點.(1)求橢圓的標準方程;(2)設為橢圓的左焦點,為橢圓上任意一點,為坐標原點,求的最小值.22.(10分)已知函數(shù)(1)求的單調區(qū)間;(2)若,求的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A2、C【解析】分別求出點M在x軸,y軸,z軸上的投影點的坐標,再借助空間兩點間距離公式計算作答.【詳解】設點M在x軸上的投影點,則,而x軸的方向向量,由得:,解得,則,設點M在y軸上的投影點,則,而y軸的方向向量,由得:,解得,則,設點M在z軸上的投影點,則,而z軸的方向向量,由得:,解得,則,所以.故選:C3、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.4、B【解析】由,將轉化為表示,結合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎題.5、B【解析】根據(jù)題意求得,化簡得到,結合,求得的值,即可求解.【詳解】在中,,,,AD為BC邊上的高,可得,由又因為,所以,所以.故選:B.6、D【解析】根據(jù)橢圓的定義,寫出,可求出的和,又根據(jù)關于縱軸成對稱分布,得到結果詳解】設橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關于軸成對稱分布,又,故所求的值為故選:D7、B【解析】根據(jù)等差數(shù)列通項公式相關計算求出公差,進而求出首項.【詳解】設公差為,由題意得:,解得:,所以.故選:B8、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關于橢圓的離心率和雙曲線的離心率的關系式,即可求得的值.【詳解】設橢圓的長軸長為,雙曲線的實軸長為,令,不妨設則,解之得代入,可得整理得,即,也就是故選:C9、D【解析】先求出拋物線的焦點和準線,利用拋物線的定義將轉化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準線方程為,設點到準線的距離為,則,則由拋物線的定義可知∵,當點、、三點共線時等號成立,∴,故選:.10、D【解析】利用點到直線的距離公式,即可求得參數(shù)的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.11、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關系是相交或異面.故選:D12、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學生進行問卷調查,利用樣本估計總體的思想,則應抽取成績不少于60分的學生人數(shù)為人故答案為:14、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.15、【解析】由,判斷出函數(shù)的單調性,利用單調性解即可【詳解】設,又有成立,函數(shù),即是上的增函數(shù),,即,,故答案為:16、【解析】建立空間直角坐標系設,,,,于是,,因為,所以,從而,,此為點形成的軌跡方程,其在底面圓盤內的長度為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),短軸長為,焦距為;(2).【解析】(1)由長軸得,再由離心率求得,從而可得后可得橢圓方程;(2)直線方程與橢圓方程聯(lián)立方程組求得交點坐標后可得距離【詳解】(1)由已知:,,故,,則橢圓的方程為:,所以橢圓的短軸長為,焦距為.(2)聯(lián)立,解得,,所以,,故18、(1)或或(2)為定值,而,,均不為定值【解析】(1)過拋物線外一定點的直線恰好與該拋物線只有一個交點,則分兩類分別討論,一是直線與拋物線的對稱軸平行,二是直線與拋物線相切;(2)聯(lián)立直線的方程與拋物線的方程,根據(jù)韋達定理,分別表示出,,,為直線斜率的形式,便可得出結果.【小問1詳解】過點的直線與拋物線僅有一個公共點,則該直線可能與拋物線的對稱軸平行,也可能與拋物線相切,下面分兩種情況討論:當直線可能與拋物線的對稱軸平行時,則有:當直線與拋物線相切時,由于點在軸上方,且在拋物線外,則存在兩條直線與拋物線相切:易知:是其中一條直線另一條直線與拋物線上方相切時,不妨設直線的斜率為,則有:聯(lián)立直線與拋物線可得:可得:則有:解得:故此時的直線的方程為:綜上,直線的方程為:或或【小問2詳解】若與交于A,B兩點,分別設其坐標為,,且由(1)可知直線要與拋物線有兩個交點,則直線的斜率存在且不為,不妨設直線的斜率為,則有:聯(lián)立直線與拋物線可得:可得:,即有:根據(jù)韋達定理可得:,則有:,下面分別說明各項是否為定值:,故運算結果為定值;,故運算結果不為定值;,故運算結果不為定值;,故運算結果不為定值.綜上,可得:為定值,而,,均不為定值19、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過拋物線焦點的直線的性質,結合拋物線的定義,即可求出弦長AB【詳解】(1)拋物線C:的準線為,由得:,得.所以拋物線的方程為.(2)設,,由,,∴,∵直線l經過拋物線C的焦點F,∴解得:,所以k的值為1或.【點睛】考核拋物線的定義及過焦點弦的求法20、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標系,寫出各點坐標,設,,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標系,則,,,設,,,,設平面一個法向量為,則,令,則,,即,平面的一個法向量是,因為二面角余弦值為.所以,(負值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個法向量為,又,,所以直線AF與平面BCF所成角的正弦值為21、(1)(2)【解析】(1)設橢圓的方程為,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)設點,則,且,利用平面向量數(shù)量積的坐標運算結合二次函數(shù)的基本性質可求得的最小值.【小問1詳解】(1)由題可設橢圓的方程為,由橢圓經過點,可得,解得或(舍).所以,橢圓的標準方程為.【小問2詳解】解:易知,設點,則,且,,,則,當且僅當時,等號成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論