版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校2026屆高二上數(shù)學(xué)期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)為偶函數(shù),且當(dāng)時(shí),,則不等式的解集為()A. B.C. D.2.在中,角A,B,C的對(duì)邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形3.橢圓上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則到另一個(gè)焦點(diǎn)的距離是()A. B.C. D.4.雙曲線的左、右焦點(diǎn)分別為、,點(diǎn)P在雙曲線右支上,,,則C的離心率為()A. B.2C. D.5.橢圓的離心率為()A. B.C. D.6.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.7.如圖,在棱長為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.8.若等比數(shù)列的前n項(xiàng)和,則r的值為()A. B.C. D.9.設(shè)為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)為,為拋物線上一點(diǎn).若,則的面積為()A. B.C. D.10.下列說法正確的個(gè)數(shù)有()個(gè)①在中,若,則②是,,成等比數(shù)列的充要條件③直線是雙曲線的一條漸近線④函數(shù)的導(dǎo)函數(shù)是,若,則是函數(shù)的極值點(diǎn)A.0 B.1C.2 D.311.在一個(gè)正方體中,為正方形四邊上的動(dòng)點(diǎn),為底面正方形的中心,分別為中點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),線段與互相平分,則滿足的實(shí)數(shù)的值有A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)12.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,若,則______.14.如圖所示,二面角為,是棱上的兩點(diǎn),分別在半平面內(nèi),且,,,,,則的長______15.設(shè)、為正數(shù),若,則的最小值是______,此時(shí)______.16.總體由編號(hào)為01,02,…,30的30個(gè)個(gè)體組成.選取方法是從下面隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號(hào)為____________.660657471734072750173625236116651189183311199219700581020578645323456476三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項(xiàng)公式;(2)求的最大項(xiàng)18.(12分)已知一張紙上畫有半徑為4圓O,在圓O內(nèi)有一個(gè)定點(diǎn)A,且,折疊紙片,使圓上某一點(diǎn)剛好與A點(diǎn)重合,這樣的每一種折法,都留下一條直線折痕,當(dāng)取遍圓上所有點(diǎn)時(shí),所有折痕與的交點(diǎn)形成的曲線記為C.(1)求曲線C的焦點(diǎn)在軸上的標(biāo)準(zhǔn)方程;(2)過曲線C的右焦點(diǎn)(左焦點(diǎn)為)的直線l與曲線C交于不同的兩點(diǎn)M,N,記的面積為S,試求S的取值范圍.19.(12分)已知圓的圓心在直線,且與直線相切于點(diǎn).(1)求圓的方程;(2)直線過點(diǎn)且與圓相交,所得弦長為,求直線的方程.20.(12分)已知拋物線:的焦點(diǎn)是圓與軸的一個(gè)交點(diǎn).(1)求拋物線的方程;(2)若過點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,О為坐標(biāo)原點(diǎn),證明:.21.(12分)已知函數(shù)(1)若在點(diǎn)處的切線與軸平行,求的值;(2)當(dāng)時(shí),求證:;(3)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍22.(10分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】結(jié)合導(dǎo)數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡不等式來求得不等式的解集.【詳解】當(dāng)時(shí),單調(diào)遞增,,所以單調(diào)遞增.因?yàn)槭桥己瘮?shù),所以當(dāng)時(shí),單調(diào)遞減.,,,或.即不等式的解集為.故選:D2、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對(duì)邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點(diǎn)睛】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題3、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個(gè)焦點(diǎn)的距離是.故選:B.4、C【解析】由,所以為直角三角形,根據(jù)雙曲線的定義結(jié)合勾股定理可得答案.【詳解】由,所以為直角三角形.,根據(jù)雙曲線的定義可得所以,即,即,所以故選:C5、A【解析】由橢圓標(biāo)準(zhǔn)方程求得,再計(jì)算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點(diǎn)睛】本題考查求橢圓的離心率,根據(jù)橢圓標(biāo)準(zhǔn)方程求出即可6、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計(jì)算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B7、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)?,分別為,的中點(diǎn),因?yàn)?,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)?,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C8、B【解析】利用成等比數(shù)列來求得.【詳解】依題意,等比數(shù)列的前n項(xiàng)和,,,所以.故選:B9、D【解析】先由拋物線方程求出點(diǎn)的坐標(biāo),準(zhǔn)線方程為,再由可求得點(diǎn)的橫坐標(biāo)為4,從而可求出點(diǎn)的縱坐標(biāo),進(jìn)而可求出的面積【詳解】由題意可得點(diǎn)的坐標(biāo),準(zhǔn)線方程為,因?yàn)闉閽佄锞€上一點(diǎn),,所以點(diǎn)的橫坐標(biāo)為4,當(dāng)時(shí),,所以,所以的面積為,故選:D10、B【解析】根據(jù)三角函數(shù)、等比數(shù)列、雙曲線和導(dǎo)數(shù)知識(shí)逐項(xiàng)分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數(shù)在上單調(diào)遞減,所以,故①正確,②當(dāng)且時(shí),此時(shí),但是,,不成等比數(shù)列,故②錯(cuò)誤,③由雙曲線可得雙曲線的漸近線為,故③錯(cuò)誤,④“”是“是函數(shù)的極值點(diǎn)”的必要不充分條件,故④錯(cuò)誤.故選:B.11、C【解析】因?yàn)榫€段D1Q與OP互相平分,所以四點(diǎn)O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時(shí),Q一定在線段ON上運(yùn)動(dòng),只有當(dāng)P為C1D1的中點(diǎn)時(shí),Q與點(diǎn)M重合,此時(shí)λ=1,符合題意若P在線段C1B1與線段B1A1上時(shí),在平面ABCD找不到符合條件Q;在P在線段D1A1上時(shí),點(diǎn)Q在直線OM上運(yùn)動(dòng),只有當(dāng)P為線段D1A1的中點(diǎn)時(shí),點(diǎn)Q與點(diǎn)M重合,此時(shí)λ=0符合題意,所以符合條件的λ值有兩個(gè)故選C.12、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【詳解】因?yàn)椋?,,若,則,解得,所以.故答案為:.【點(diǎn)睛】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.14、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點(diǎn),分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點(diǎn)睛】本題主要考查空間向量的運(yùn)算法則以及數(shù)量積的運(yùn)算法則,意在考查靈活應(yīng)用所學(xué)知識(shí)解答問題的能力,是中檔題15、①.4②.【解析】巧用“1”改變目標(biāo)式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時(shí)等號(hào)成立.故答案為,【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用“1”的代換法和基本不等式,考查運(yùn)算能力,屬于中檔題16、23【解析】根據(jù)隨機(jī)表,由編號(hào)規(guī)則及讀表位置列舉出前5個(gè)符合要求的編號(hào),即可得答案.【詳解】由題設(shè),依次得到的數(shù)字為57,47,17,34,07,27,50,17,36,25,23,……根據(jù)編號(hào)規(guī)則符合要求的依次為17,07,27,25,23,……所以第5個(gè)個(gè)體編號(hào)為23.故答案為:23.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可;(2)運(yùn)用二次函數(shù)的性質(zhì)進(jìn)行求解即可.【小問1詳解】設(shè)等差數(shù)列的公差為,所以有,所以;【小問2詳解】由(1)可知:,當(dāng)時(shí),有最大項(xiàng),最大項(xiàng)為:.18、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點(diǎn)的橢圓;(2)分為l斜率存在和不存在時(shí)討論,斜率存在時(shí),直線方程和橢圓方程聯(lián)立,用韋達(dá)定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點(diǎn)G坐標(biāo)原點(diǎn),OA所在直線為x軸建立平面直角坐標(biāo)系,如圖:∴可知,,設(shè)折痕與和分別交于M,N兩點(diǎn),則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O(shè),A為焦點(diǎn),4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設(shè),,則的周長為當(dāng)軸時(shí),l的方程為,,,當(dāng)l與x軸不垂直時(shí),設(shè),由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是19、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計(jì)算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對(duì)直線的斜率是否存在進(jìn)行分類討論,設(shè)出直線的方程,利用點(diǎn)到直線的距離公式求出參數(shù),即可得出直線的方程.【小問1詳解】解:過點(diǎn)且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點(diǎn),聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時(shí),直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,即,由題意可得,解得,此時(shí),直線的方程為,即.綜上所述,直線的方程為或.20、(1)(2)證明見解析【解析】(1)由圓與軸的交點(diǎn)分別為,可得拋物線的焦點(diǎn)為,從而即可求解;(2)設(shè)直線為,聯(lián)立拋物線方程,由韋達(dá)定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點(diǎn)分別為,則拋物線的焦點(diǎn)為,所以,所以拋物線方程為;【小問2詳解】證明:設(shè)直線為,聯(lián)立方程,有,所以,所以,所以.21、(1);(2)證明見解析;(3).【解析】(1)由可求得實(shí)數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點(diǎn),且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因?yàn)榈亩x域?yàn)椋?由題意可得,解得.【小問2詳解】證明:當(dāng)時(shí),,該函數(shù)的定義域?yàn)椋?,令,其中,則,故函數(shù)在上遞減,因?yàn)?,,所以,存在,使得,則,且,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以,,所以,當(dāng)時(shí),.【小問3詳解】解:函數(shù)的定義域?yàn)椋?令,其中,則,所以,函數(shù)單調(diào)遞減,因?yàn)楹瘮?shù)有兩個(gè)零點(diǎn),等價(jià)于函數(shù)在上存在唯一的極值點(diǎn),且為極大值點(diǎn),且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因?yàn)?,由,可得,?gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進(jìn)而構(gòu)造輔助函數(shù);(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).22、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 項(xiàng)目管理安全培訓(xùn)制度
- 舞蹈培訓(xùn)中安全管理制度
- 鄉(xiāng)鎮(zhèn)干部教育培訓(xùn)制度
- 黨員教育培訓(xùn)登記制度
- 銀行業(yè)消防安全培訓(xùn)制度
- 駕駛培訓(xùn)安全管理制度
- 壹學(xué)車計(jì)時(shí)培訓(xùn)管理制度
- 借力培訓(xùn)制度
- 集團(tuán)培訓(xùn)制度
- 教師校本培訓(xùn)學(xué)時(shí)制度
- 骨科老年患者譫妄課件
- 《熱力管道用金屬波紋管補(bǔ)償器》
- 2025年中國汽輪機(jī)導(dǎo)葉片市場調(diào)查研究報(bào)告
- 中班幼兒戶外游戲活動(dòng)實(shí)施現(xiàn)狀研究-以綿陽市Y幼兒園為例
- 特色休閑農(nóng)場設(shè)計(jì)規(guī)劃方案
- 采購部門月度匯報(bào)
- 新華書店管理辦法
- 檔案專業(yè)人員公司招聘筆試題庫及答案
- 工程竣工移交單(移交甲方、物業(yè))
- 來料檢驗(yàn)控制程序(含表格)
評(píng)論
0/150
提交評(píng)論