2026屆安徽省定遠縣爐橋中學高一數(shù)學第一學期期末考試試題含解析_第1頁
2026屆安徽省定遠縣爐橋中學高一數(shù)學第一學期期末考試試題含解析_第2頁
2026屆安徽省定遠縣爐橋中學高一數(shù)學第一學期期末考試試題含解析_第3頁
2026屆安徽省定遠縣爐橋中學高一數(shù)學第一學期期末考試試題含解析_第4頁
2026屆安徽省定遠縣爐橋中學高一數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆安徽省定遠縣爐橋中學高一數(shù)學第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設集合,則()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)2.若函數(shù)(且)的圖像經(jīng)過定點P,則點P的坐標是()A. B.C. D.3.點直線中,被圓截得的最長弦所在的直線方程為()A. B.C. D.4.如圖是一個幾何體的三視圖,則此幾何體的直觀圖是.A. B.C. D.5.計算sin(-1380°)的值為()A. B.C. D.6.已知函數(shù),若函數(shù)有四個零點,則的取值范圍是A. B.C. D.7.設集合,,則集合=()A B.C. D.8.設命題,則為()A. B.C. D.9.在底面為正方形的四棱錐中,側面底面,,,則異面直線與所成的角為()A. B.C. D.10.已知函數(shù).若,,,則的大小關系為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設是第三象限的角,則的終邊在第_________象限.12.已知,則__________.13.在中,,則_____________14.函數(shù)中角的終邊經(jīng)過點,若時,的最小值為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.15.已知冪函數(shù)過點,若,則________16.已知正四棱錐的底面邊長為4cm,高與斜高的夾角為,則該正四棱錐的側面積等于________cm2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某校高二(5)班在一次數(shù)學測驗中,全班名學生的數(shù)學成績的頻率分布直方圖如下,已知分數(shù)在分的學生數(shù)有14人.(1)求總人數(shù)和分數(shù)在的人數(shù);(2)利用頻率分布直方圖,估算該班學生數(shù)學成績的眾數(shù)和中位數(shù)各是多少?(3)現(xiàn)在從分數(shù)在分的學生(男女生比例為1:2)中任選2人,求其中至多含有1名男生的概率.18.已知,,(1)求實數(shù)a、b的值,并確定的解析式;(2)試用定義證明在內(nèi)單調(diào)遞減19.如圖,正方體的棱長為,連接,,,,,,得到一個三棱錐.求:(1)三棱錐的表面積;(2)三棱錐的體積20.已知(1)若,求的值;(2)若,且,求實數(shù)的值21.已知函數(shù).(1)當,為奇函數(shù)時,求b的值;(2)如果為R上的單調(diào)函數(shù),請寫出一組符合條件的a,b值;(3)若,,且的最小值為2,求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意分別計算出集合的補集和集合,然后計算出結果.【詳解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故選:C2、B【解析】由函數(shù)圖像的平移變換或根據(jù)可得.【詳解】因為,所以當,即時,函數(shù)值為定值0,所以點P坐標為.另解:因為可以由向右平移一個單位長度后,再向下平移1個單位長度得到,由過定點,所以過定點.故選:B3、A【解析】要使得直線被圓截得的弦長最長,則直線必過圓心,利用斜率公式求得斜率,結合點斜式方程,即可求解.【詳解】由題意,圓,可得圓心坐標為,要使得直線被圓截得的弦長最長,則直線必過圓心,可得直線的斜率為,所以直線的方程為,即所求直線的方程為.故選:A.4、D【解析】由已知可得原幾何體是一個圓錐和圓柱的組合體,上部分是一個圓錐,下部分是一個圓柱,而且圓錐和圓柱的底面積相等,故此幾何體的直觀圖是:故選D5、D【解析】根據(jù)誘導公式以及特殊角三角函數(shù)值求結果.【詳解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故選:D【點睛】本題考查誘導公式以及特殊角三角函數(shù)值,考查基本求解能力,屬基礎題.6、B【解析】不妨設,的圖像如圖所示,則,,其中,故,也就是,則,因,故.故選:B.【點睛】函數(shù)有四個不同零點可以轉化為的圖像與動直線有四個不同的交點,注意函數(shù)的圖像有局部對稱性,而且還是倒數(shù)關系.7、B【解析】先根據(jù)一元二次不等式和對數(shù)不等式的求解方法求得集合M、N,再由集合的交集運算可得選項【詳解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故選:B8、D【解析】根據(jù)全稱量詞否定的定義可直接得到結果.【詳解】根據(jù)全稱量詞否定的定義可知:為:,使得.故選:.【點睛】本題考查含量詞的命題的否定,屬于基礎題.9、C【解析】由已知可得PA⊥平面ABCD,底面ABCD為正方形,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,因為PB∥CM,所以ACM就是異面直線PB與AC所成的角,再求解即可.【詳解】由題意:底面ABCD為正方形,側面底面,,面面,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四邊形,∴PB∥CM,所以∠ACM就是異面直線PB與AC所成的角設PA=AB=a,在三角形ACM中,,∴三角形ACM是等邊三角形所以∠ACM等于60°,即異面直線PB與AC所成的角為60°故選:C.【點睛】思路點睛:先利用面面垂直得到PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,得到∠ACM就是異面直線PB與AC所成的角10、C【解析】由函數(shù)的奇偶性結合單調(diào)性即可比較大小.【詳解】根據(jù)題意,f(x)=x2﹣2|x|+2019=f(﹣x),則函數(shù)f(x)為偶函數(shù),則a=f(﹣log25)=f(log25),當x≥0,f(x)=x2﹣2x+2019=(x﹣1)2+2018,在(0,1)上為減函數(shù),在(1,+∞)上為增函數(shù);又由1<20.8<2<log25,則.則有b<a<c;故選C【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的判斷以及性質(zhì)的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、二或四【解析】根據(jù)是第三象限角,得到,,再得到,,然后討論的奇偶可得答案.【詳解】因為是第三象限角,所以,,所以,,當為偶數(shù)時,為第二象限角,當為奇數(shù)時,為第四象限角.故答案為:二或四.12、##【解析】首先根據(jù)同角三角函數(shù)的基本關系求出,再利用二倍角公式及同角三角函數(shù)的基本關系將弦化切,最后代入計算可得;【詳解】解:因為,所以,所以故答案為:13、【解析】先由正弦定理得到,再由余弦定理求得的值【詳解】由,結合正弦定理可得,故設,,(),由余弦定理可得,故.【點睛】本題考查了正弦定理和余弦定理的運用,屬于基礎題14、(1)(2),【解析】(1)根據(jù)角的終邊經(jīng)過點求,再由題意得周期求即可;(2)根據(jù)正弦函數(shù)的單調(diào)性求單調(diào)區(qū)間即可.【小問1詳解】因為角的終邊經(jīng)過點,所以,若時,的最小值為可知,∴【小問2詳解】令,解得故單調(diào)遞增區(qū)間為:,15、##【解析】先由已知條件求出的值,再由可求出的值【詳解】因冪函數(shù)過點,所以,得,所以,因為,所以,得,故答案為:16、32【解析】在正四棱錐的高和斜高所在的直角三角形中計算出斜高后,根據(jù)三角形的面積公式即可求出側面積.【詳解】因為正四棱錐的底面邊長為4cm,高與斜高的夾角為,所以斜高為cm,所以該正四棱錐的側面積等于cm2故答案為:32.【點睛】本題考查了正棱錐的結構特征,考查了求正四棱錐的側面積,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)4;(2)眾數(shù)和中位數(shù)分別是107.5,110;(3)﹒【解析】(1)先求出分數(shù)在內(nèi)的學生的頻率,由此能求出該班總人數(shù),再求出分數(shù)在內(nèi)的學生的頻率,由此能求出分數(shù)在內(nèi)的人數(shù)(2)利用頻率分布直方圖,能估算該班學生數(shù)學成績的眾數(shù)和中位數(shù)(3)由題意分數(shù)在內(nèi)有學生6名,其中男生有2名.設女生為,,,,男生為,,從6名學生中選出2名,利用列舉法能求出其中至多含有1名男生的概率【小問1詳解】分數(shù)在內(nèi)的學生的頻率為,∴該班總人數(shù)為分數(shù)在內(nèi)的學生的頻率為:,分數(shù)在內(nèi)的人數(shù)為【小問2詳解】由頻率直方圖可知眾數(shù)是最高的小矩形底邊中點的橫坐標,即為設中位數(shù)為,,眾數(shù)和中位數(shù)分別是107.5,110【小問3詳解】由題意分數(shù)在內(nèi)有學生名,其中男生有2名設女生為,,,,男生為,,從6名學生中選出2名的基本事件為:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共15種,其中至多有1名男生的基本事件共14種,其中至多含有1名男生的概率為18、(1),;(2)證明見解析【解析】(1)根據(jù)條件解出即可;(2)利用單調(diào)性的定義證明即可.【小問1詳解】由,,得解得,,∴【小問2詳解】設,則∵,,∴,即,∴在上單調(diào)遞減19、(1)(2)【解析】(1)直接按照錐體表面積計算即可;(2)利用正方體體積減去三棱錐,,,的體積即可.【小問1詳解】∵是正方體,∴,∴三棱錐的表面積為【小問2詳解】三棱錐,,,是完全一樣的且正方體的體積為,故20、(1)(2)【解析】(1)根據(jù)同角三角函數(shù)的關系,平方化簡可得,計算即可得答案.(2)由題意得,可得或,根據(jù)的范圍,可求得的值,代入即可得答案.【小問1詳解】由,可得所以,即,所以【小問2詳解】由,可得,解得或,而,所以,解得,所以21、(1)(2),(答案不唯一,滿足即可)(3)【解析】(1)當時,根據(jù)奇函數(shù)的定義,可得,化簡整理,即可求出結果;(2)由函數(shù)和函數(shù)在上的單調(diào)遞性,可知,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論