2026屆河南省開封市五縣聯(lián)考高一數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
2026屆河南省開封市五縣聯(lián)考高一數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
2026屆河南省開封市五縣聯(lián)考高一數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
2026屆河南省開封市五縣聯(lián)考高一數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
2026屆河南省開封市五縣聯(lián)考高一數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2026屆河南省開封市五縣聯(lián)考高一數(shù)學第一學期期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,且,則實數(shù)=A B.0C.3 D.2.已知函數(shù)在[2,3]上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.3.某幾何體的三視圖如圖,其正視圖中的曲線部分為半圓,則該幾何體的表面積為()A. B.C. D.4.函數(shù)f(x)=-|sin2x|在上零點的個數(shù)為()A.2 B.4C.5 D.65.我國在2020年9月22日在聯(lián)合國大會提出,二氧化碳排放力爭于2030年前實現(xiàn)碳達峰,爭取在2060年前實現(xiàn)碳中和.為了響應黨和國家的號召,某企業(yè)在國家科研部門的支持下,進行技術(shù)攻關(guān):把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,經(jīng)測算,該技術(shù)處理總成本y(單位:萬元)與處理量x(單位:噸)之間的函數(shù)關(guān)系可近似表示為,當處理量x等于多少噸時,每噸的平均處理成本最少()A.120 B.200C.240 D.4006.下列各組函數(shù)與的圖象相同的是()A. B.C. D.7.關(guān)于函數(shù)有下述四個結(jié)論:①是偶函數(shù);②在區(qū)間單調(diào)遞減;③在有個零點;④的最大值為.其中所有正確結(jié)論的編號是()A.①②④ B.②④C.①④ D.①③8.命題p:?x∈N,x3>x2的否定形式?p為()A.?x∈N,x3≤x2 B.?x∈N,x3>x2C.?x∈N,x3<x2 D.?x∈N,x3≤x29.我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸C.4寸 D.5寸10.下列與的終邊相同的角的集合中正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,且在上,則線段的長為______12._____13.漏斗作為中國傳統(tǒng)器具而存在于日常生活之中,某漏斗有蓋的三視圖如圖所示,其中俯視圖為正方形,則該漏斗的容積為不考慮漏斗的厚度______,若該漏斗存在外接球,則______.14.若點在過兩點的直線上,則實數(shù)的值是________.15.如圖,已知四棱錐P-ABCD,底面ABCD為正方形,PA⊥平面ABCD.給出下列命題:①PB⊥AC;②平面PAB與平面PCD的交線與AB平行;③平面PBD⊥平面PAC;④△PCD為銳角三角形.其中正確命題的序號是________16.是第___________象限角.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,求,實數(shù)a的取值范圍18.已知函數(shù)的圖象在定義域(0,+∞)上連續(xù)不斷,若存在常數(shù)T>0,使得對于任意的x>0,恒成立,稱函數(shù)滿足性質(zhì)P(T).(1)若滿足性質(zhì)P(2),且,求的值;(2)若,試說明至少存在兩個不等的正數(shù)T1、T2,同時使得函數(shù)滿足性質(zhì)P(T1)和P(T2);(3)若函數(shù)滿足性質(zhì)P(T),求證:函數(shù)存在零點.19.已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值20.設n是不小于3的正整數(shù),集合,對于集合Sn中任意兩個元素.定義.若,則稱A,B互為相反元素,記作或(1)若n=3,A=(0,1,0),B=(1,1,0),試寫出,,以及A·B的值;(2)若,證明:;(3)設k是小于n的正奇數(shù),至少含有兩個元素的集合,且對于集合M中任意兩個不同的元素,都有,試求集合M中元素個數(shù)的所有可能的取值21.如圖所示,在直三棱柱中,,,,,點是中點()求證:平面()求直線與平面所成角的正切值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意得,,因為,所以,解得,故選C.考點:向量的坐標運算.2、C【解析】根據(jù)復合函數(shù)的單調(diào)性法則“同增異減”求解即可.【詳解】由于函數(shù)在上單調(diào)遞減,在定義域內(nèi)是增函數(shù),所以根據(jù)復合函數(shù)的單調(diào)性法則“同增異減”得:在上單調(diào)遞減,且,所以且,解得:.故的取值范圍是故選:C.3、C【解析】幾何體是一個組合體,包括一個三棱柱和半個圓柱,三棱柱的是一個底面是腰為的等腰直角三角形,高是,其底面積為:,側(cè)面積為:;圓柱的底面半徑是,高是,其底面積為:,側(cè)面積為:;∴組合體的表面積是,本題選擇C選項點睛:(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進行恰當?shù)姆治觯瑥娜晥D中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和4、C【解析】在同一坐標系內(nèi)畫出兩個函數(shù)y1=與y2=|sin2x|的圖象,根據(jù)圖象判斷兩個函數(shù)交點的個數(shù),進而得到函數(shù)零點的個數(shù)【詳解】在同一直角坐標系中分別畫出函數(shù)y1=與y2=|sin2x|的圖象,結(jié)合圖象可知兩個函數(shù)的圖象在上有5個交點,故原函數(shù)有5個零點故選C【點睛】判斷函數(shù)零點的個數(shù)時,可轉(zhuǎn)化為判斷函數(shù)和函數(shù)的圖象的公共點的個數(shù)問題,解題時可畫出兩個函數(shù)的圖象,通過觀察圖象可得結(jié)論,體現(xiàn)了數(shù)形結(jié)合在解題中的應用5、D【解析】先根據(jù)題意求出每噸的平均處理成本與處理量之間的函數(shù)關(guān)系,然后分和分析討論求出其最小值即可【詳解】由題意得二氧化碳每噸的平均處理成本為,當時,,當時,取得最小值240,當時,,當且僅當,即時取等號,此時取得最小值200,綜上,當每月得理量為400噸時,每噸的平均處理成本最低為200元,故選:D6、B【解析】根據(jù)相等函數(shù)的定義即可得出結(jié)果.【詳解】若函數(shù)與的圖象相同則與表示同一個函數(shù),則與的定義域和解析式相同.A:的定義域為R,的定義域為,故排除A;B:,與的定義域、解析式相同,故B正確;C:的定義域為R,的定義域為,故排除C;D:與的解析式不相同,故排除D.故選:B7、A【解析】利用偶函數(shù)的定義可判斷出命題①的正誤;去絕對值,利用余弦函數(shù)的單調(diào)性可判斷出命題②的正誤;求出函數(shù)在區(qū)間上的零點個數(shù),并利用偶函數(shù)的性質(zhì)可判斷出命題③的正誤;由取最大值知,然后去絕對值,即可判斷出命題④的正誤.【詳解】對于命題①,函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),命題①為真命題;對于命題②,當時,,則,此時,函數(shù)在區(qū)間上單調(diào)遞減,命題②正確;對于命題③,當時,,則,當時,,則,由偶函數(shù)的性質(zhì)可知,當時,,則函數(shù)在上有無數(shù)個零點,命題③錯誤;對于命題④,若函數(shù)取最大值時,,則,,當時,函數(shù)取最大值,命題④正確.因此,正確的命題序號為①②④.故選A.【點睛】本題考查與余弦函數(shù)基本性質(zhì)相關(guān)的命題真假的判斷,解題時要結(jié)合自變量的取值范圍去絕對值,結(jié)合余弦函數(shù)的基本性質(zhì)進行判斷,考查推理能力,屬于中等題.8、D【解析】根據(jù)含有一個量詞命題的否定的定義求解.【詳解】因為命題p:?x∈N,x3>x2的是全稱量詞命題,其否定是存在量詞命題,所以?p:?x∈N,x3≤x2故選:D【點睛】本題主要考查含有一個量詞命題的否定,還考查了理解辨析的能力,屬于基礎題.9、B【解析】根據(jù)題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.10、C【解析】由任意角的定義判斷【詳解】,故與其終邊相同的角的集合為或角度制和弧度制不能混用,只有C符合題意故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】∵,∴,∴,∵且在上,∴線段為的角平分線,∴,以A為原點,如圖建立平面直角坐標系,則,D∴故答案為112、【解析】利用三角函數(shù)公式化簡,即可求出結(jié)果.【詳解】,故答案為:.【點睛】本題主要考查運用三角函數(shù)公式化簡求值,倍角公式的應用,考查運算求解能力.13、①.②.0.5【解析】先將三視圖還原幾何體,然后利用長方體和錐體的體積公式求解容積即可;設該漏斗外接球的半徑為,設球心為,利用,列式求解的值即可.【詳解】由題中的三視圖可得,原幾何體如圖所示,其中,,正四棱錐的高為,,,所以該漏斗的容積為;正視圖為該幾何體的軸截面,設該漏斗外接球的半徑為,設球心為,則,因為,又,所以,整理可得,解得,所以該漏斗存在外接球,則故答案為:①;②.14、【解析】先由直線過兩點,求出直線方程,再利用點在直線上,求出的值.【詳解】由直線過兩點,得,則直線方程為:,得,即,又點在直線上,得,得.故答案為:【點睛】本題考查了已知兩點求直線的方程,直線方程的應用,屬于容易題.15、②③【解析】設AC∩BD=O,由題意證明AC⊥PO,由已知可得AC⊥PA,與在同一平面內(nèi)過一點有且只有一條直線與已知直線垂直矛盾說明①錯誤;由線面平行的判定和性質(zhì)說明②正確;由線面垂直的判定和性質(zhì)說明③正確;由勾股定理即可判斷,說明④錯誤【詳解】設AC∩BD=O,如圖,①若PB⊥AC,∵AC⊥BD,則AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,則AC⊥PA,在平面PAC內(nèi)過P有兩條直線與AC垂直,與在同一平面內(nèi)過一點有且只有一條直線與已知直線垂直矛盾,①錯誤;②∵CD∥AB,則CD∥平面PAB,∴平面PAB與平面PCD的交線與AB平行,②正確;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,則平面PBD⊥平面PAC,③正確;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD為直角三角形,④錯誤,故答案為:②③16、三【解析】根據(jù)給定的范圍確定其象限即可.【詳解】由,故在第三象限.故答案為:三.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】由題意利用指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性,求出實數(shù)的取值范圍【詳解】解:因為,所以,所以因為,所以,所以又因為,所以.因為,所以又因為,所以.綜上,實數(shù)a取值范圍是18、(1)0;(2)證明見解析;(3)證明見解析.【解析】(1)由滿足性質(zhì)可得恒成立,取可求,取可求,由此可求的值;(2)設滿足,利用零點存在定理證明關(guān)于的方程至少有兩個解,證明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和;(3)分別討論,,時函數(shù)的零點的存在性,由此完成證明.【小問1詳解】因為滿足性質(zhì),所以對于任意的x,恒成立.又因為,所以,,由可得,所以,;【小問2詳解】若正數(shù)滿足,等價于,記,顯然,,因為,所以,,即.因為的圖像連續(xù)不斷,所以存,使得,因此,至少存在兩個不等的正數(shù),使得函數(shù)同時滿足性質(zhì)和.【小問3詳解】若,則1即為零點;因為,若,則,矛盾,故,若,則,,,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當時,函數(shù)在上存在零點,當時,函數(shù)在上存在零點,若,則由,可得,由,可得,由,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當時,函數(shù)在上存在零點,當時,函數(shù)在上存在零點,綜上,函數(shù)存在零點.【點睛】“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是透過現(xiàn)象看本質(zhì),它們考查的還是基礎數(shù)學知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應萬變才是制勝法寶.19、a=-1或a=2【解析】函數(shù)的對稱軸是,根據(jù)與區(qū)間的關(guān)系分類討論得最大值,由最大值求得【詳解】函數(shù)f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,對稱軸方程為x=a(1)當a<0時,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1(2)當0≤a≤1時,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=(舍去)(3)當a>1時,f(x)max=f(1)=a,∴a=2綜上可知,a=-1或a=2【點睛】關(guān)鍵點點睛:本題考查二次函數(shù)最值問題.二次函數(shù)在區(qū)間最值問題,一般需要分類討論,分類標準是對稱軸與區(qū)間的關(guān)系,如果,求最小值時分三類:,,,求最大值只要分兩類:和,類似分類20、(1)(2)證明見解析(3)集合M中元素的個數(shù)只可能是2【解析】(1)根據(jù)定義直接求解即可;(2)設,進而結(jié)合題意得,,再計算即可;(3)假設為集合M中的三個不相同的元素,進而結(jié)合題意,推出矛盾,得出假設不成立,即集合M中至多有兩個元素,且時符合題意,故集合M中元素的個數(shù)只可能是2【小問1詳解】解:因為若,則稱A,B互為相反元素,記作或,所以,所以.【小問2詳解】解:設,由,可得所以,當且僅當,即時上式“=”成立由題意可知即所以【小問3詳解】解:解法1:假設為集合M中的三個不相同的元素則即又由題意可知或1,i=1,2,,n恰有k個1,與n-k個0設其中k個等于1項依次為n-k個等于0的項依次為由題意可知所以,同理所以即因為由(2)可知因為所以,設,由題意可知.所以,得與為奇數(shù)矛盾所以假設不成立,即集合M中至多有兩個元素當時符合題意所以集合M中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論