版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆福建省三明市三地三校高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)是定義在實數(shù)集上的不恒為零的偶函數(shù),且對任意實數(shù)都有,則的值為A. B.C. D.2.已知函數(shù),若對一切,都成立,則實數(shù)a的取值范圍為()A. B.C. D.3.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.下列命題中正確的是()A.若兩個向量相等,則它們的起點和終點分別重合B.模相等的兩個平行向量是相等向量C.若和都是單位向量,則=D.兩個相等向量的模相等5.在四棱錐中,平面,中,,,則三棱錐的外接球的表面積為A. B.C. D.6.已知集合,則函數(shù)的最小值為()A.4 B.2C.-2 D.-47.已知,則a,b,c的大小關(guān)系為()A.a<b<c B.c<a<bC.a<c<b D.c<b<a8.已知集合,且,則的值可能為()A. B.C.0 D.19.下面各組函數(shù)中表示同一個函數(shù)的是()A., B.,C., D.,10.已知是定義在上的單調(diào)函數(shù),滿足,則函數(shù)的零點所在區(qū)間為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計算:__________12.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________13.已知定義在上的奇函數(shù),當(dāng)時,,當(dāng)時,________14.學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當(dāng)時,圖象是線段BC,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.要使得學(xué)生學(xué)習(xí)效果最佳,則教師安排核心內(nèi)容的時間段為____________.(寫成區(qū)間形式)15.已知冪函數(shù)圖像過點,則該冪函數(shù)的解析式是______________16.已知函數(shù),.(1)若函數(shù)的值域為R,求實數(shù)m的取值范圍;(2)若函數(shù)是函數(shù)的反函數(shù),當(dāng)時,函數(shù)的最小值為,求實數(shù)m的值;(3)用表示m,n中的最大值,設(shè)函數(shù),有2個零點,求實數(shù)m的范圍.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象經(jīng)過點(1)求的解析式;(2)若不等式對恒成立,求m的取值范圍18.如圖,在三棱錐中,.(1)畫出二面角的平面角,并求它的度數(shù);(2)求三棱錐的體積.19.已知.(1)若,,求x的值;(2)若,求的最大值和最小值.20.已知函數(shù)f(x)=(a,b為常數(shù)),且方程f(x)-x+12=0有兩個零點分別為3和4.求函數(shù)f(x)的解析式21.已知函數(shù).(1)當(dāng)時,求方程的解;(2)若,不等式恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】方法一:當(dāng)且時,由,得,令,則是周期為的函數(shù),所以,當(dāng)時,由得,,又是偶函數(shù),所以,所以,所以,所以.選A方法二:當(dāng)時,由得,,即,同理,所以又當(dāng)時,由,得,因為是偶函數(shù),所以,所以.選A點睛:解決抽象函數(shù)問題的兩個注意點:(1)對于抽象函數(shù)的求函數(shù)值的問題,可選擇定義域內(nèi)的恰當(dāng)?shù)闹登蠼?,即要善于用取特殊值的方法求解函?shù)值(2)由于抽象函數(shù)的解析式未知,故在解題時要合理運用條件中所給出的性質(zhì)解題,有時在解題需要作出相應(yīng)的變形2、C【解析】將,成立,轉(zhuǎn)化為,對一切成立,由求解即可.【詳解】解:因為函數(shù),若對一切,都成立,所以,對一切成立,令,所以,故選:C【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;.3、B【解析】找到與終邊相等的角,進而判斷出是第幾象限角.【詳解】因為,所以角和角是終邊相同的角,因為角是第二象限角,所以角是第二象限角.故選:B.4、D【解析】考查所給的四個選項:向量是可以平移的,則若兩個向量相等,則它們的起點和終點不一定分別重合,A說法錯誤;向量相等向量模相等,且方向相同,B說法錯誤;若和都是單位向量,但是兩向量方向不一致,則不滿足,C說法錯誤;兩個相等向量的模一定相等,D說法正確.本題選擇D選項.5、B【解析】由題意,求長,即可求外接圓半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐的外接球的表面積.【詳解】由題意中,,,則是等腰直角三角形,平面可得,,平面,,則的中點為球心設(shè)外接圓半徑為,則,設(shè)球心到平面的距離為,則,由勾股定理得,則三棱錐的外接球的表面積故選:【點睛】本題考查三棱錐外接球表面積的求法,利用球的對稱性確定球心到平面的距離,培養(yǎng)空間感知能力,中等題型.6、D【解析】因為集合,所以,設(shè),則,所以,且對稱軸為,所以最小值為,故選D7、B【解析】結(jié)合指數(shù)函數(shù)、冪函數(shù)的單調(diào)性確定正確選項.【詳解】在上遞增,在上遞增..故選:B8、C【解析】化簡集合得范圍,結(jié)合判斷四個選項即可【詳解】集合,四個選項中,只有,故選:C【點睛】本題考查元素與集合的關(guān)系,屬于基礎(chǔ)題9、B【解析】根據(jù)兩個函數(shù)的定義域相同,且對應(yīng)關(guān)系相同分析判斷即可【詳解】對于A,的定義域為R,而的定義域為,兩函數(shù)的定義域不相同,所以不是同一個函數(shù);對于B,兩個函數(shù)的定義域都為R,定義域相同,,這兩個函數(shù)是同一個函數(shù);對于C,的定義域為,而的定義域是R,兩個函數(shù)的定義城不相同,所以不是同一個函數(shù);對于D,的定義域為,而的定義域是R,兩個的數(shù)的定義域不相同,所以不是同一個函數(shù).故選:B.10、C【解析】設(shè),即,再通過函數(shù)的單調(diào)性可知,即可求出的值,得到函數(shù)的解析式,然后根據(jù)零點存在性定理即可判斷零點所在區(qū)間【詳解】設(shè),即,,因為是定義在上的單調(diào)函數(shù),所以由解析式可知,在上單調(diào)遞增而,,故,即因為,,由于,即有,所以故,即的零點所在區(qū)間為故選:C【點睛】本題主要考查函數(shù)單調(diào)性的應(yīng)用,零點存在性定理的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力,屬于較難題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】.故答案為.點睛:(1)任何非零實數(shù)的零次冪等于1;(2)當(dāng),則;(3).12、4050【解析】設(shè)每輛車的月租金定為元,則租賃公司的月收益:當(dāng)時,最大,最大值為,即當(dāng)每車輛的月租金定為元時,租賃公司的月收益最大,最大月收益是,故答案為.【思路點睛】本題主要考查閱讀能力、數(shù)學(xué)建模能力和化歸思想以及幾何概型概率公式,屬于難題.與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進行解答.解答本題的關(guān)鍵是:將租賃公司的月收益表示為關(guān)于每輛車的月租金的函數(shù),然后利用二次函數(shù)的性質(zhì)解答.13、【解析】設(shè),則,代入解析式得;再由定義在上的奇函數(shù),即可求得答案.【詳解】不妨設(shè),則,所以,又因為定義在上的奇函數(shù),所以,所以,即.故答案為:.14、【解析】當(dāng),時,設(shè),把點代入能求出解析式;當(dāng),時,設(shè),把點、代入能求出解析式,結(jié)合題設(shè)條件,列出不等式組,即可求解.詳解】當(dāng)x∈(0,12]時,設(shè),過點(12,78)代入得,a則f(x),當(dāng)x∈(12,40]時,設(shè)y=kx+b,過點B(12,78)、C(40,50)得,即,由題意得,或得4<x≤12或12<x<28,所以4<x<28,則老師就在x∈(4,28)時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳,故答案為:(4,28)【點睛】本題考查解析式的求法,考查不等式組的解法,解題時要認(rèn)真審題,注意待定系數(shù)法的合理運用,屬于中檔題15、【解析】設(shè)出冪函數(shù)的函數(shù)表達,然后代點計算即可.【詳解】設(shè),因為,所以,所以函數(shù)的解析式是故答案為:.16、(1)(2)(3)【解析】(1)函數(shù)的值域為R,可得,求解即可;(2)設(shè)分類論可得m的值;(3)對m分類討論可得結(jié)論.【小問1詳解】值域為R,∴【小問2詳解】,.設(shè),,①若即時,,②若,即時,,舍去③若即時,,無解,舍去綜上所示:【小問3詳解】①顯然,當(dāng)時,在無零點,舍去②當(dāng)時,,舍去③時,解分別為,,只需控制,不要均大于等于1即可Ⅰ:,,,舍去Ⅱ:,無解,綜上:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)直接代入兩點計算得到答案.(2)變換得到,判斷在上單調(diào)遞減,計算,解不等式得到答案.【詳解】(1)由題意得解得,.故,(2)不等式,即不等式,則不等式在上恒成立,即不等式上恒成立,即在上恒成立因為在上單調(diào)遞減,在上單調(diào)遞減,所以在上單調(diào)遞減,故.因為在上恒成立,所以,即,解得故m的取值范圍為【點睛】本題考查了函數(shù)的解析式,恒成立問題,將恒成立問題轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.18、⑴⑵.【解析】(1)取中點,連接、,是二面角的平面角,進而求出此角度數(shù)即可;(2)利用等積法或割補法求體積.試題解析:⑴取中點,連接、,,,,且平面,平面,是二面角平面角.在直角三角形中,在直角三角形中,是等邊三角形,⑵解法1:,又平面,平面平面,且平面平面在平面內(nèi)作于,則平面,即是三棱錐的高.在等邊中,,三棱錐的體積.解法2:平面在等邊中,的面積,三棱錐的體積.19、(1)或;(2)的最大值和最小值分別為:,.【解析】(1)利用三角恒等變換化簡函數(shù),再利用給定的函數(shù)值及x的范圍求解作答.(2)求出函數(shù)相位的范圍,再結(jié)合正弦函數(shù)的性質(zhì)計算作答.【小問1詳解】依題意,,由,即得:,而,即,于是得或,解得或,所以x的值是或.【小問2詳解】由(1)知,,當(dāng)時,,則當(dāng),即時,,當(dāng),即時,,所以的最大值和最小值分別為:,.20、【解析】將3和4分別代入方程得,解得,進而可得.試題解析:將3和4分別代入方程-x+12=0得解得所以已知零點求函數(shù)解析式的一般步驟為:
將零點代入函數(shù)得到方程;
求出方程中的未知參數(shù);
將參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)道德與法治教學(xué)中生活化教學(xué)的創(chuàng)新實踐與效果分析課題報告教學(xué)研究課題報告
- 人工智能考研全攻略
- 電梯消防安全常識指南
- 全面安全管理體系講解
- 《基于非遺文化的小學(xué)美術(shù)教學(xué)資源庫構(gòu)建研究》教學(xué)研究課題報告
- 90后職業(yè)發(fā)展規(guī)劃指南
- 初中物理滑輪組溫度效率影響因素的實驗研究課題報告教學(xué)研究課題報告
- 高性能HDI印制板生產(chǎn)線項目可行性研究報告
- 吞咽困難風(fēng)險評估與預(yù)防措施
- 人工智能背景下教師專業(yè)素養(yǎng)提升的關(guān)鍵能力研究教學(xué)研究課題報告
- 醫(yī)學(xué)三維可視化與虛擬現(xiàn)實技術(shù):革新肝癌腹腔鏡手術(shù)的探索與實踐
- 統(tǒng)編版(2024)八年級上冊歷史新教材全冊知識點復(fù)習(xí)提綱
- 水平定向鉆施工技術(shù)應(yīng)用與管理
- 風(fēng)險金管理辦法
- 校長在食堂從業(yè)人員培訓(xùn)會上的講話
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全風(fēng)險分級管控與隱患排查治理標(biāo)準(zhǔn)》
- 美育視域下先秦儒家樂教思想對舞蹈教育的當(dāng)代價值研究
- 運輸企業(yè)隱患排查獎懲制度
- 學(xué)堂在線 雨課堂 學(xué)堂云 工程倫理2.0 章節(jié)測試答案
- 網(wǎng)絡(luò)傳播法規(guī)(自考14339)復(fù)習(xí)題庫(含答案)
- 廣東省江門市蓬江區(qū)2025年七年級上學(xué)期語文期末考試試卷及答案
評論
0/150
提交評論