版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
寧夏回族自治區(qū)銀川市興慶區(qū)高級中學(xué)2026屆數(shù)學(xué)高一上期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則2.不等式的解集為,則函數(shù)的圖像大致為()A. B.C. D.3.如果是定義在上的函數(shù),使得對任意的,均有,則稱該函數(shù)是“-函數(shù)”.若函數(shù)是“-函數(shù)”,則實數(shù)的取值范圍是()A. B.C. D.4.已知,,則下列說法正確的是()A. B.C. D.5.已知奇函數(shù)在上單調(diào)遞減,且,則不等式的解集為()A. B.C. D.6.已知在正四面體ABCD中,E是AD的中點,P是棱AC上的一動點,BP+PE的最小值為,則該四面體內(nèi)切球的體積為()A.π B.πC.4π D.π7.已知,則的最小值是()A.2 B.C.4 D.8.已知集合,則A. B.C. D.9.函數(shù)的值域是A. B.C. D.10.函數(shù)(且)圖象恒過定點,若點在直線上,其中,則的最大值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的圖象為,以下結(jié)論中正確的是______(寫出所有正確結(jié)論的編號).①圖象關(guān)于直線對稱;②圖象關(guān)于點對稱;③由的圖象向右平移個單位長度可以得到圖象;④函數(shù)在區(qū)間內(nèi)是增函數(shù).12.函數(shù)的值域是__________13.當曲線與直線有兩個相異交點時,實數(shù)的取值范圍是________14.大圓周長為的球的表面積為____________15.已知函數(shù),關(guān)于方程有四個不同的實數(shù)解,則的取值范圍為__________16.已知函數(shù),若,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2,三月底測得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關(guān)系有兩個函數(shù)模型與可供選擇(1)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份(參考數(shù)據(jù):lg2≈03010,lg3≈0.4771)18.設(shè)是常數(shù),函數(shù).(1)用定義證明函數(shù)是增函數(shù);(2)試確定的值,使是奇函數(shù);(3)當是奇函數(shù)時,求的值域.19.已知函數(shù),只能同時滿足下列三個條件中的兩個:①的解集為;②;③最小值為(1)請寫出這兩個條件的序號,求的解析式;(2)求關(guān)于的不等式的解集.20.已知定義在上的函數(shù)是奇函數(shù)(1)求實數(shù);(2)若不等式恒成立,求實數(shù)的取值范圍21.已知全集,集合,集合.(1)求;(2)若集合,且集合與集合滿足,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】AD選項,可以用不等式基本性質(zhì)進行證明;BC選項,可以用舉出反例.【詳解】,顯然均大于等于0,兩邊平方得:,A正確;當時,滿足,但,B錯誤;若,當時,則,C錯誤;若,,則,D錯誤.故選:A2、C【解析】根據(jù)不等式的解集求出參數(shù),從而可得,根據(jù)該形式可得正確的選項【詳解】因為不等式的解集為,故,故,故,令,解得或,故拋物線開口向下,與軸的交點的橫坐標為,故選:C3、A【解析】根據(jù)題中的新定義轉(zhuǎn)化為,即,根據(jù)的值域求的取值范圍.【詳解】,,函數(shù)是“-函數(shù)”,對任意,均有,即,,即,又,或.故選:A【點睛】關(guān)鍵點點睛:本題考查函數(shù)新定義,關(guān)鍵是讀懂新定義,并使用新定義,并能轉(zhuǎn)化為函數(shù)值域解決問題.4、B【解析】利用對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)判斷即可.【詳解】∵,∴,∵,∴,∵,∴,則故選:.5、A【解析】由題意可得在單調(diào)遞減,且,從而可得當或時,,當或時,,然后分和求出不等式的解集【詳解】因為奇函數(shù)在上單調(diào)遞減,且,所以在單調(diào)遞減,且,所以當或時,,當或時,,當時,不等式等價于,所以或,解得,當時,不等式等價于,所以或,解得或,綜上,不等式的解集為,故選:A6、D【解析】首先設(shè)正四面體的棱長為,將側(cè)面和沿邊展開成平面圖形,根據(jù)題意得到的最小值為,從而得到,根據(jù)等體積轉(zhuǎn)化得到內(nèi)切球半徑,再計算其體積即可.【詳解】設(shè)正四面體的棱長為,將側(cè)面和沿邊展開成平面圖形,如圖所示:則的最小值為,解得.如圖所示:為正四面體的高,,正四面體高.所以正四面體的體積.設(shè)正四面體內(nèi)切球的球心為,半徑為,如圖所示:則到正四面體四個面的距離相等,都等于,所以正四面體的體積,解得.所以內(nèi)切球的體積.故選:D7、C【解析】根據(jù)對數(shù)運算和指數(shù)運算可得,,再由以及基本不等式可得.【詳解】因為,所以,所以,所以,所以,當且僅當即時,等號成立.故選:C.【點睛】本題考查了指數(shù)和對數(shù)運算,基本不等式求最值,屬于中檔題.8、C【解析】分別解集合A、B中的不等式,再求兩個集合的交集【詳解】集合,集合,所以,選擇C【點睛】進行集合的交、并、補運算前,要搞清楚每個集合里面的元素種類,以及具體的元素,再進行運算9、C【解析】函數(shù)中,因為所以.有.故選C.10、D【解析】∵由得,∴函數(shù)(且)的圖像恒過定點,∵點在直線上,∴,∵,當且僅當,即時取等號,∴,∴最大值為,故選D【名師點睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤二、填空題:本大題共6小題,每小題5分,共30分。11、①②④【解析】利用整體代入的方式求出對稱中心和對稱軸,分析單調(diào)區(qū)間,利用函數(shù)的平移方式檢驗平移后的圖象.【詳解】由題意,,令,,當時,即函數(shù)的一條對稱軸,所以①正確;令,,當時,,所以是函數(shù)的一個對稱中心,所以②正確;當,,在區(qū)間內(nèi)是增函數(shù),所以④正確;的圖象向右平移個單位長度得到,與函數(shù)不相等,所以③錯誤.故答案為:①②④.12、【解析】利用換元法,將變?yōu)椋缓罄萌呛愕茸儞Q,求三角函數(shù)的值域,可得答案.【詳解】由,得,可設(shè),故,不妨取為銳角,而,時取最大值),,故函數(shù)的值域為,故答案為:.13、【解析】由解析式可知曲線為半圓,直線恒過;畫出半圓的圖象,找到直線與半圓有兩個交點的臨界狀態(tài),利用圓的切線的求解方法和兩點連線斜率公式求得斜率的取值范圍.【詳解】為恒過的直線則曲線圖象如下圖所示:由圖象可知,當直線斜率時,曲線與直線有兩個相異交點與半圓相切,可得:解得:又本題正確結(jié)果:【點睛】本題考查利用曲線與直線的交點個數(shù)求解參數(shù)范圍的問題,關(guān)鍵是能夠通過數(shù)形結(jié)合的方式找到臨界狀態(tài),易錯點是忽略曲線的范圍,誤認為曲線為圓.14、【解析】依題意可知,故求得表面積為.15、【解析】作出的圖象如下:結(jié)合圖像可知,,故令得:或,令得:,且等號取不到,故,故填.點睛:一般討論函數(shù)零點個數(shù)問題,都要轉(zhuǎn)化為方程根的個數(shù)問題或兩個函數(shù)圖像交點的個數(shù)問題,本題由于涉及函數(shù)為初等函數(shù),可以考慮函數(shù)圖像來解決,轉(zhuǎn)化為過定點的直線與拋物線變形圖形的交點問題,對函數(shù)圖像處理能力要求較高.16、16或-2【解析】討論和兩種情況討論,解方程,求的值.【詳解】當時,,成立,當時,,成立,所以或.故答案為:或三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)選擇較為合適;(2)6月【解析】(1)根據(jù)指數(shù)函數(shù)和冪函數(shù)的性質(zhì)可得合適的函數(shù)的模型.(2)根據(jù)選擇的函數(shù)模型可求最小月份.小問1詳解】指數(shù)函數(shù)隨著自變量的增大其函數(shù)的增長速度越大,冪函數(shù)隨著自變量的增大其函數(shù)的增長速度越小,因為鳳眼蓮在湖中的蔓延速度越來越快,故選擇較為合適.故,故,.所以.【小問2詳解】由(1),放入面積為,令,則,故鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份為6月.18、(1)詳見解析(2)【解析】(1)證明函數(shù)單調(diào)性可根據(jù)函數(shù)單調(diào)性定義取值,作差變形,定號從而寫結(jié)論(2)因為函數(shù)是奇函數(shù)所以(3)由.故,∴試題解析:(1)設(shè),則.∵函數(shù)是增函數(shù),又,∴,而,,∴式.∴,即是上的增函數(shù).(2)∵對恒成立,∴.(3)當時,.∴,∴,繼續(xù)解得,∴,因此,函數(shù)的值域是.點睛:本題考差了函數(shù)單調(diào)性,奇偶性概念及其判斷、證明,函數(shù)的值域求法,對于定義來證明單調(diào)性要注意做差后的式子的化簡.19、(1)(2)答案見解析【解析】(1)若選①②,則的解集不可能為;若選②③,,開口向下,則無最小值.只能是選①③,由函數(shù)的解集為可知,-1,3是方程的根,則,又由的最小值可知且在對稱軸上取得最小值,從而解出;(2)由,即,然后對分類求解得答案;【小問1詳解】選①②,則,開口向下,所以的解集不可能為;選①③,函數(shù)的解集為,,3是方程的根,所以的對稱軸為,則,所以,又的最小值為,(1),解得,,所以則;選②③,,開口向下,則無最小值綜上,.【小問2詳解】由化簡得若,則或;若,則不等式解集為R;若,則或當時,不等式的解集為或;當,則不等式解集為R;當,則不等式的解集為或20、(1)1(2)【解析】(1)根據(jù)奇函數(shù)的性質(zhì),,求參數(shù)后,并驗證;(2)結(jié)合函數(shù)單調(diào)性和奇函數(shù)的性質(zhì),不等式變形得恒成立,再根據(jù)判別式求實數(shù)的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)(車輛工程)汽車造型設(shè)計試題及答案
- 2025年中職(助產(chǎn))產(chǎn)前護理階段測試題及答案
- 2025年中職市政工程施工(道路施工工藝)試題及答案
- 2025年高職(云計算技術(shù)應(yīng)用)云服務(wù)器搭建試題及解析
- 2025年中職月球與行星科學(xué)(月球科學(xué))技能測試題
- 2025年中職第二學(xué)年(康復(fù)技術(shù))康復(fù)護理試題及答案
- 2025年中職環(huán)境工程(大氣污染防治基礎(chǔ))試題及答案
- 2025年高職第一學(xué)年(眼視光學(xué))低視力康復(fù)基礎(chǔ)綜合測試試題及答案
- 2026年鄭州信息科技職業(yè)學(xué)院單招綜合素質(zhì)筆試參考題庫附答案詳解
- 2026年河南工業(yè)和信息化職業(yè)學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年中文投(陜西)文化傳媒有限公司招聘備考題庫完整參考答案詳解
- 2025年上海農(nóng)林職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試模擬題附答案
- 2025 小學(xué)六年級語文下冊 日積月累 經(jīng)典名句情境應(yīng)用課件
- 《高速公路服務(wù)區(qū)開放設(shè)置技術(shù)要求》
- 2024-2030年全球與中國巡飛彈系統(tǒng)行業(yè)發(fā)展戰(zhàn)略及投資前景預(yù)測報告
- QBT 1619-2018 票夾行業(yè)標準
- 代建項目全過程運營管理及風(fēng)險防控課件
- 廣東省佛山市南海區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試卷+
- 牛津版小學(xué)英語教材梳理
- 風(fēng)機安裝工程施工強制性條文執(zhí)行記錄表
- GB/T 1355-2021小麥粉
評論
0/150
提交評論