版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BCGCITYMOBILITYCOMPASS
TheGlobalChampionsofUrbanMobility
January2026
ByMarkusHagenmaier,SebastianPfaffinger,ArtursSmilkstins,JohannesWahl,JulienBert,NikolausLang,VladislavBoutenko,andAndreyBerdichevskiy
Spendafewminutesatrushhourinmanymajorcities,andyou’llseethestarkrealitiesofmobility:cloggedroads,pollutedair,andpatchy
masstransit.Butwhilemostcitiesaresuffering,someareovercomingthesechallenges.Inthosecities,residentsenjoybettermobilityand
livehealthierlives,withshortercommutesandcleanerskies.
Toidentifywhichcitiesareperformingwellandwhatlessonstheycanoffer,weconductedacomprehensiveanalysisof
morethan150citiesaroundtheworldandrankedthembytheirurbanmobilityperformance.Wecallthisframework
theBCGCityMobilityCompass.Ourapproachinvolved
assessingmorethan20KPIspercity,supplementedwithanin-depthsurveyofmorethan50cityleaders.Fromthat
analysis,wegroupedcitiesintosixarchetypes,basedon
suchfactorsastheirpopulationsizeanddensity,urban
layout,andmobilitypreferences,todeterminewhichcitiesarebuildingfuture-readymobilitysystems.(Seet
he
appendix
foradetaileddiscussionofourmethodology.)
Followingthatresearch,wedevelopedaglobalbenchmarkdesignedtoserveasabasisforgauginghowcitiesperformonthefactorsthatmattermosttocityleadersand
residentsalike:fast,sustainable,seamless,affordable,andaccessibletransport.Usingthistool,citiescanmakeplanstotransformtheirmobilitysystemsandmovepeoplemoreeffectively—todayandinthefuture.(See“
ANew,On-
DemandMobilityDiagnosticsToolfor150Cities
.”)
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY2
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY3
ANew,On-DemandMobilityDiagnosticsToolfor150Cities
Tobringourextensivedatabasetolife,wehavecreated
BCG’sCityMobilityHealthCheckTool
,adigital
benchmarkingtooldesignedtoenablecityleaderstoidentifystrengthsandshortcomingsoftheircitywithjustoneclick.Thetoolwillultimatelycoverall150citiesinourresearch
study,butthethreethatfollowofferaninitialsample.
Londonhasstrongsystemcapacity,thankstoitsextensiveanddensetrack-basedpublictransitnetwork,offering
convenientaccesstoroughly95%ofLondon’sresidents.
Thecityalsobenefitsfromregulationsincludingcongestionpricing,ultra-lowemissionzones,andarangeofrestrictionsonprivatevehicleaccess.Ontheotherhand,thecitycan
improvebymakingpublictransportmoreaffordable.
Programstoincreasenonfarerevenue,decreaseoperatingexpenses,orbettercross-subsidizewithrevenuefrom
privatetransportpushinitiativescouldallhelpreducepublictransportticketprices.
Copenhagenisagloballeaderinactivemobility,with
extensiveinfrastructuredesignedforsafeandconvenient
walkingandbiking,andwithahighshareofaccessible
greenareasinthecity.Inaddition,morethan90%of
residentsalreadylivewithinaconvenientdistanceofa
publictransportstation.Still,thecitycanfurtherimproveitstrack-basedpublictransport,whichisbelowaveragebutis
currentlybeingaddressedwithanongoingmetroexpansion.
SanFranciscostandsoutasagloballeaderinmobility
innovation,activelypilotingmobility-as-a-serviceplatformsandautonomousvehicles—withmorethan800robotaxis
alreadyoperatingonitsstreets.Amongcar-dependent
cities,SanFranciscohasarelativelylowshareofprivatecartripsatjustabove60%,whereasmanyU.S.peersexceed
90%.Nevertheless,thisfigureremainshighbyinternationalstandards.Thecitycanfurtheradvanceitsmobilitysystembystrengtheningpublictransport—expandingbusroutes
andincreasingstopdensity—andbycontinuingto
discourageprivatecarusethroughmeasuressuchashigherparkingfeesandcongestionpricing,followingtheexampleofcitiessuchasNewYork.
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY4
TransportationSystemsPushedtotheBrink
Inoursurvey,95%ofcitieshaveset2035targetstomove
peoplemoreeffectively—outofprivatecarsandinto
sustainablemodes,includingpublictransportorformsof
activemobility(micromobility,bicycles,orwalking).Ambitionlevelsvaryglobally.CitiesinEuropeandAsia-Pacifichave
establishedgoalsofhavingresidentsmakemorethan60%ofalltripsviasustainablemodesby2035;citiesinNorth
AmericaandtheMiddleEasthavesetmoremodesttargetsofaround30%to40%.Yetregardlessoftheirambitionlevel,citiesarecurrently10to15percentagepointsbehindwheretheyshouldbeinordertomeettheir2035targets,andtheyareunlikelytoclosethatgap.(See
Exhibit1
.)And
historically,mostcitieshavebeenabletoshiftonlyaboutthreetofivepointsofmodalshareperdecade.
Inthefuture,achievingmobilitytargetswilllikelybecome
morechallenging,asmosturbanareasfacemounting
pressuresfromtheeffectsofurbanization,anincreased
relianceonprivatelyownedcars,andgrowingsystem
complexity.Technologyalonewillnotprovideasilverbullet,becauseeachinnovationsolvessomeproblemswhile
creatingnewones.Forinstance,althoughelectricvehicles(EVs)cansignificantlyreducepollution,theyalsorequireextensivenewinfrastructure,addingfiscalstrainand
introducingnewplanningchallenges.Navigatingthis
evolvinglandscapesuccessfullycallsfordecisiveactionsfromleaders.
EXHIBIT1
Worldwide,CitiesFaceaGapofAlmost15PercentagePointsBetweenToday’sTransportMixandTheirTargetsfor2035
SUSTAINABLETRANSPORTMODALSHARE,STATUSQUOVERSUSAMBITION(%)
Ambition:~54
40–14
Global
Ambition:~70
66–4
Europe
Ambition:~34
14–20
NorthAmerica
Ambition:~61
54–7
Asia-Paci?c
Ambition:~39
19–20
MiddleEast
StatusquoGaptoambition
Source:BCGanalysis.
Note:Sustainabletransportmodesincludemicromobility,walking,cycling,andpublictransport;theydonotincludepowertrainsonprivatecars.
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY5
SixUrbanMobilityArchetypes
Thereisnouniversalblueprintfortransformingurban
mobility.Inoursurvey,morethan90%ofcityleaders
reportedstrugglingtoidentifythemosteffectivelevers—underscoringthepotentialvalueoftailoredpeer
comparisonsinhelpingthemadvancemobilityoutcomes.
Toidentifycomparablepeers,wegroupedthe150
globalcitiesinouranalysisintosixarchetypes,accountingfordifferencessuchaspopulationdensity,geographic
layout,economicconditions,mobilitymaturity,andinfrastructurebase:
?ProsperousInnovationCenters.Thefirstarchetypeincludescitieswithapopulationoflessthan3
millionandabove-averagepopulationdensity,wheresustainablemodesdominate—withactivetransport,suchaswalkingorcycling,commonlyaccountingformorethan50%oftrips.Thesecitiescombinedenseinfrastructurewithadvanceddigitalintegrationto
createefficient,people-centeredmobilityecosystems.ExamplesincludeUtrechtandCopenhagen.
?TraditionalMiddleweights.Thesecondcategory
comprisescitieswithpopulationsoflessthan3million,
whereprivatecarsremainthedominantmodeof
transport.Becauseoftheirlowerpopulationdensities(inmanycaseslessthan3,000residentspersquarekilometer)andcorrespondinglyreducedsystemcomplexity,these
citiescanstillachievesolidmobilityperformanceoverall.ExamplesincludeNashvilleandTallinn.
?Mass-TransitMegacities.Nextaredenselypopulatedurbanareaswithpopulationsofmorethan3million
(andoftenfarmore).Publictransportisthedominantmode,typicallyaccountingforroughlyhalfofalltrips.Thesecitiesoperatelarge-scalenetworks,oftenrelyingonastrongtrack-basedtransitbackbone.Moreover,
theyincreasinglyapplypolycentricplanningtomanagepeopleflows,demandpeaks,andotherfactors.
ExamplesincludeSingaporeandTokyo.
?MultimodalMetropolises.Citiesinthiscategory
relyonablendofpublictransportandactivemobilityasdominantmodes.Overall,sustainabletransport
typicallyaccountsforthree-fourthsofalltrips.These
cities,typicallywithpopulationsslightlygreaterthan3millionandlessconcentrateddowntownareas,aimfor
seamlessintegrationacrosstransportmodes.BerlinandBarcelonaareleadingexamples.
?PrivateTransportPowerhouses.Thefiftharchetypeincludeshighlycar-dependentcitieswithpopulation
sizesabove3million,where,onaverage,approximately80%to90%oftripsoccurinprivatevehicles.Thisisa
resultofadifferingurbanplanningapproach:Widely
spreadcitieswithextensivesuburbs—particularlyin
theUS—andoftenrathermonocentricurbanlayouts
makecommuteslongandcarsnecessary.Chicagoisanexampleofthisarchetype.
?DevelopingUrbanGiants.Thesearesignificanturbanagglomerationsindevelopingcountries,usuallywith
populationsexceeding10million.Theyarecharacterizedbyhighdensityandrapiddemographicexpansion
thatislikelytocontinue(insomecasesatratesof
40%to60%by2040).Despitethesecomplexities,thescaleandmomentumofcitiesinthiscategoryoffer
significanttransformationpotential.DelhiandDhakaarerepresentativecitiesinthisgroup.
Mobilitysystemperformanceacrossthesegroupsreveals
strikingdisparities.Moreadvancedarchetypessignificantlyoutperformlessmaturepeers,evenwiththedatacontrolledforsize.Forinstance,ProsperousInnovationCenters
experienceroughly50%lesscongestionthanTraditional
Middleweightsofsimilarsize.Private-TransportPowerhousesemitmorethantwiceasmuchCO?per10-minutecommuteasMass-TransitMegacities.(See
Exhibit2.
)
Overall,ouranalysisshowsastrongcorrelationbetween
cityperformanceandcardependency.Forexample,incitieswithpopulationsabove3million,residentsofthefivecitieswiththelowestcarmodalshareeachspend30to40fewerhoursincongestionperyearandemitabout800gramslessCO?per10-minutecommutethanthoselivinginthefive
citieswiththehighestcarmodalshare.(See
Exhibit3
.)
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY6
EXHIBIT2
AmongArchetypes,ProsperousInnovationCentersandMass-TransitMegacitiesLeadinMinimizingTra?cCongestionandEmissions
Congestion
TIMELOSTINTRAFFICPERRESIDENTPERYEAR(HOURS)
Emissions
CO2EMITTEDPER10-MINUTECOMMUTE(GRAMS)
150
100
50
1,800
1,500
1,200
900
600
300
0.11101000.1110100
POPULATION(MILLIONS)POPULATION(MILLIONS)
ProsperousInnovationCentersTraditionalMiddleweightsMultimodalMetropolisesMass-TransitMegacities
PrivateTransportPowerhousesDevelopingUrbanGiants>80%ofcitiesineacharchetypeinarea
Sources:ABCofmobilityresearchproject;Numbeo;BCGanalysis.
Note:LogarithmicXaxisappliedtoenhancechartreadability.
EXHIBIT3
TheShareofPrivateCarsinaCityStronglyCorrelateswithTra?cCongestionandCO2Emissions
Congestion
PRIVATECARMODALSHARE(%)
Emissions
PRIVATECARMODALSHARE(%)
100
50
0
100
50
0
02040608010005001,0001,500
TIMELOSTINTRAFFICPERRESIDENTPERYEAR(HOURS)CO2EMITTEDPER10-MINUTECOMMUTE(GRAMS)
Sources:ABCofmobilityresearchproject;Numbeo;BCGanalysis.
Note:Sampleincludesapproximately40citieswithpopulationsexceeding3million,primarilyindevelopedcountries.
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY7
GlobalChampions
Clearly,therearedifferencesnotonlybetweenarchetypesbutalsowithineacharchetype,assomecitiesoutperformtheirdirectpeers.Toidentifytheseleaders,weassessedthecitiesinourstudyaccordingtosixquantifiable
dimensions,eachwitharangeofpotentialKPIs:
?OverallSystemOutcomesandEffectiveness(forexample,timelostincongestionperresident,orCO2emissionsfora10-minutetrip)
?PrivateTransportManagement(forexample,parkingfeesasapercentageofincome,oruseofcongestionpricingschemes)
?PublicTransportPerformance(forexample,costofamonthlypublictransportticketasapercentage
ofincome,oraccessibilitytopublictransportasa
percentageofpopulationlivingwithin500metersofabusstoportrack-basedpublictransportstation)
?ActiveMobilityPromotion(forexample,bikelanecoverage,orthecostofsharedbikesorscooters)
?DemandManagement(forexample,polycentricityscore,ortheimplementationofactivedemand
managementinitiatives)1
?FutureReadinessandTechnologyAdoption(for
example,spendingondigitaltoolssuchasdigitaltwins,ortheuseofend-customerplatforms)
Byaggregatingscoresacrosstheseareas,werankedall150citiesinouranalysisonascaleof1to10,leadingtosixglobalmobilitychampions—oneforeacharchetype.(See
Exhibit4
.)
EXHIBIT4
KualaLumpur
Bangalore
Manila
Delhi
Dhaka
Developing
UrbanGiants
Totalscore
System
outcomes
Privatetransportmanagement
Publictransportperformance
Activemobilitypromotion
Demand
management
Tech
adoption
2.92.92.52.42.1
....●
.....
....●
....
....●
....
TheHighest-RankingCitiesinEachArchetype
Utrecht
Helsinki
Vienna
Amsterdam
Copenhagen
Prosperous
InnovationCenters
Stockholm
Mannheim
Wellington
Tallinn
Rotterdam
Traditional
Middleweights
7.26.96.26.25.9
....w
....w
....
....
..w.w
.w.
Singapore
Tokyo
HongKong
Seoul
London
Mass-TransitMegacities
Berlin
Barcelona
Madrid
Nanjing
Beijing
Multimodal
Metropolises
Private
Transport
Powerhouses
SanFrancisco1
NewYork1
AbuDhabi
Dubai
Sydney
8.28.07.97.87.7
....
.ww..
●..
....●
w...●
..●.
8.38.17.77.67.6
....●
....
●..
..w
●....
....
8.17.66.96.56.3
..●.
ww...
..●..
....
●ww..
.....
5.85.65.55.44.9
...
.ww
....
..●w
..w.
..●●
Scoringintervals:>9.59.5to8.5to.7.5to6.5to.5.5to4.5to●3.5to●2.5to≤1.5
>8.5>7.5>6.5>5.5>4.5>3.5>2.5>1.5
Source:BCGanalysis.
Note:Thescaleforallscoresis1to10.“Totalscore”refertototaloverallscoreonthe2025BCGCityMobilityCompass.
1Metropolitanareadata;higherpublictransportshareinthecityIsdowntownarea(e.g.,inNewYork,publictransportshareforManhattanexceeds50%).
1.Polycentricityreferstocitylayoutsthathavemorethanonedowntowncommercialarea.Thesecitiestendtohavelesstrafficcongestion,becausetheydon’trequireresidentstocommutetothesameareaforwork.
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY8
AttheforefrontoftheglobalpackisSingapore,thetop
performeramongMass-TransitMegacities.Singapore7s
leadingpositionreflectsacarefullycalibrated
multidimensionalmobilitystrategythataimstoreduce
relianceonprivatecarsthrougharobustpublictransport
network,promotionofalternativetransportmodes,and
schemestocapthepermissiblenumberofregistered
vehicles.Thecity’sElectronicRoadPricingsystemmanagescongestionbyusingelectronicgantriestoautomatically
chargevehiclesforroadusageduringpeakperiods,withfeesvaryingbylocation,time,andtrafficconditions.Morethan80%ofintersectionsinthecityarecontrolledbyAI.
Ontopofthatstrongfoundation,Singaporeisinvestinginareassuchasactivemobility.Initiativesunderwayincludedevelopmentofa1,300-kilometercyclingpathnetwork
(scheduledtobecompleteby2030),constructionofend-of-tripfacilitieswithshowersandchangingspacesforcyclists,andinvestmentofmorethan$700milliontoenhance
pedestrianinfrastructureandsafety.
Othertop-performingcitiesbuildonadifferentfoundationandpurseotherinitiatives.Forexample,Berlinalreadyhasastrongcyclingculture,withover2,000kilometersofbikelanesinstalledacrossthecity.Nowitisworkingto
integratethatinfrastructurephysicallyanddigitallywith
othermodes—forexample,bytransformingpublic
transportstationsintomultimodalhubs,alongwith
introducingmobilesappsthatletcustomersbook,use,andpayfordifferenttypesoftransitinasingleinterface.This
approachmakesBerlinaleaderintheMultimodalMetropolisarchetype.
HowtheCityArchetypesStackUp
Thesixarchetypesserveasaframeworkforcomparing
groupsofcities,pinpointinggroupandindividual
shortcomings,andidentifyingwaystofurtheradvance
theirmobilitysystems.Consider,forexample,thefour
archetypeswithpopulationsexceeding3million—Mass-
TransitMegacities,MultimodalMetropolises,Private
TransportPowerhouses,andDevelopingUrbanGiants.
(See
Exhibit5
.)Acomparisonofrelevantdataforeach
archetyperevealsanumberofcleardifferences.For
instance,PrivateTransportPowerhouseshave70%to75%fewerbusesthanMass-TransitMegacities.AndDevelopingUrbanGiantshave75%to80%lesstrackforrail,metro,
andlight-railtransitthanMass-TransitMegacities.
ParticularlyconcerningaretheshortcomingsofDevelopingUrbanGiants,astheseweaknessesarelikelytoworsen
sharplywithacceleratingurbanization.Oursimulation
projectsthat,intheabsenceofsignificantinvestment,theshareofthepopulationwithconvenientaccesstopublic
transport(within500to1,000metersofabusstopor
track-basedpublictransportstation)willdropbyaround15percentagepointsby2040,causingoverallaccessibilitytofallsignificantlybelow50%.Atthesametime,existing
track-basedpublictransportcapacitywillbecomeanacutebottleneck:aspopulationdensityrises,weexpectrelativesystemcapacitypercapitatodecreasebyanadditional
25%to30%,furtheramplifyingcongestion,emissions,andaccessibilityissuesinmobility.
EXHIBIT5
80
3.2
78
3.1
Mass-TransitMegacities
4%
9%
3%
Developing
53
3.6
31
0.7
PrivateTransportPowerhousesandDevelopingUrbanGiantsFallShortinMakingMassTransportWidelyAvailable
Accessibility
A?ordability
Busavailability
Railavailability
POPULATIONWITH
CONVENIENTACCESSTOPUBLICTRANSPORT(%)1
MONTHLYNETINCOME
SPENTONMONTHLYPUBLICTRANSPORTTICKET(%)
NUMBEROFBUSESPER100,000RESIDENTS
RAIL,METRO,ANDLIGHTRAIL
TRACKFORPUBLICTRANSPORT(KMPER100,000RESIDENTS)
Multimodal
Metropolises
78
2.4
32
3.0
PrivateTransportPowerhouses
57
–3
2.0
+0.
4pp–7
21
1.8
–7
UrbanGiants
Sources:UnitedNations;Numbeo;citydata;BCGanalysis.
Note:pp=percentagepoints.
1Within500metersofabusstationand/orwithin1,000metersofatrack-basedpublictransportstation.
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY9
Citieswithfewerthan3millioninhabitantsfacedifferent
challenges.Intheseplaces,activemobility—cycling,
walking,andsharedmicromobility—consistently
outperformsbothprivateandpublictransport–dominatedsystemsacrossnearlyallperformancedimensions.For
example,citieswhereactivemobilityisthedominant
modeexperience25%to30%lowerlevelsofcongestion
andupto25%lowerlevelsofCO2emissionthanpeersthatrelyprimarilyonpublictransport—letalonecitieswhere
mostpeoplerelyonprivatelyownedcars.
ComparingKPIshighlightssomepotentialprioritiesfor
TraditionalMiddleweights.Inthesecities,bikeownershipratesamongadultsaremorethan40%lowerthanin
ProsperousInnovationCenters,roughlybike-lane
infrastructureislessthanone-thirdaslarge,andshared-mobilityavailabilityis55%less.(See
Exhibit6
.)Althoughthetwogroupsshowsimilarlevelsofgreen-space
availability,thedifferencesbetweenthesearchetypes
translateintomeaningfuldifferencesintrafficcongestionandemissionslevels.
EXHIBIT6
InComparisontoProsperousInnovationCenters,Traditional
MiddleweightsLackaBikeCultureandSharedMobilitySystems
Bikeculture
ADULTSWHOOWN
APRIVATEBIKEAND
REGULARLYUSEIT(%)
Infrastructure
AVAILABLEBIKELANES
(KMPER1,000RESIDENTS)
Sharedmobility
SHAREDMICROMOBILITYVEHICLESPER1,000
RESIDENTS
Walkingpromotion
ACCESSIBLEGREENAREAINCITY(%)
Prosperous
InnovationCenters
59
43%
0.43
36%
1.59
55%
0%
23
Traditional
Middleweights
–––
330.280.7123
Sources:UnitedNations;Numbeo;citydata;BCGanalysis.
1Within500metersofthenearestbusstationand/orwithin1,000metersofthenearesttrack-basedpublictransportstation.
FiveStructuralMeasurestoImproveUrbanMobility
Besidessuggestingmode-specificinterventions,thecity
leadersinoursurveyidentifiedbroaderstructural
measuresthatcanleadtogreaterprogress.These
initiatives,whichbuildontrendsinoursurveydataandoninsightssharedbycityleaders,spurchangebyincreasingpublicbuy-in,improvingefficiency,andmakingcitiesmorefuture-ready.
Enlistresidentsinthetransformation.Morethanhalfofcityleaderscitepublicresistanceasamajorbarrierto
mobilitytransformation,yetfewerthan50%involve
residentsintheprocessbeyondparticipatinginbasiconlinesurveys.Inlightofgenerationalshiftsinmobility
preferences,alongwithchangingtechnologies,citiescan
enlistresidentstoactivelyco-createmobilitytransformationthroughouttheplanningandexecutionphases.Madrid’s
“MadridCentral”low-emissionzoneisastrongexample.Whiletheprojectwasindevelopment,citizenscouldoffer
inputthroughanopen-government,onlineparticipation
tool.Thatengagementhelpedthecityovercomeinitial
resistance—andtheoverallprojectreducedcongestioninthezonebymorethan15%,improvedairquality,and
fueledstrongerlocalbusinessactivity.
Establishecosystemsofserviceproviders.Inmany
cities,thenumberofmobilityplayersapproaches100,
includingAVfleets,micromobilityservices,andsensor
providers.Thatoftenleadstoincreasedcomplexity,limitedinteroperability,andsiloeddata.Toimprove,citiescanserveasactiveorchestrators,settingdata-sharingstandards,
enforcinginteroperability,andenablingdigitalcoordination.Hamburgisagoodexample.Thecitycreatedoneof
Europe’smostadvancedmobilitydatalakesbyconnectingpublicandprivatedatastreamstopowerreal-timetrafficmanagementpilotsandpavethewayforbroader
coordinationacrossHamburg’sentiremobilitysystem.
BOSTONCONSULTINGGROUPBCGCITYMOBILITYCOMPASS:THEGLOBALCHAMPIONSOFURBANMOBILITY10
Makesmarterinfrastructureinvestments.Fiscal
constraintsandgrowingdemandformobilitycallfor
smarterinfrastructureinvestments,especiallyforPrivate
TransportPowerhousesandDevelopingUrbanGiants.Forinstance,oursimulationsforDelhiindicatethat,asaresultofpopulationgrowth,thecitywillneedanestimated$7
billionto$10billionby2040justtomaintaincurrentpublictransitservicelevels.Yetthecityalreadyfacessignificantbudgetconstraints—arealitysharedbymorethan75%ofsurveyedcities.Innovativefinancingmechanismsinclude
public-privatepartnerships,adoptionofmodulardesignstocutcapexbyupto20%,anduseofdigitaltoolstomake
planningprocessesmoreefficient.Inonecase,CityFlowbyBCGX,anAI-poweredsimulationandanalytics
platform,helpedaEuropeancapitalcutitsplannedmetrocostsby$1.4billionwithoutsacrificingperformance.
ScaleAIacrossthesystem.AIalreadydelivers
measurableimpactacrossleadingurbanmobilitysystems,
helpingtoreduceemissions,speedtrafficflows,andimprovethepassengerexperienceonpublictransit—allwithout
requiringcostlyinfrastructureoverhauls.LeadingcitiesareembracingAInotjustforoperations,butalsoasastrategiclever.Singapore,forinstance,hasembeddedAIacrossits
entiretransportecosystem,fromdynamicfleetdispatchandpredictivemaintenancetoreal-timedemandforecasting.
Rethinkurbanplanning.Inadditiontotransport
measures,urbanplanning—andspecificallyhuman-
centricdesign—canreducemobilitydemandandmake
citiesmoreresilient.Inthisregard,conceptssuchasthe
15-minutecityshowstrongpromise.Anurbanplanning
approachpilotedinBarcelona,Paris,andTokyo,the
15-minutecitygivesresidentsaccesstoessentialservicessuchaswork,shopping,schools,andhealthcarewithina15-minutewalkorbikeridefromhome.Whenrealized,
thisapproach
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年泰山護(hù)理職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考試題帶答案解析
- 2026年淄博職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能筆試參考題庫(kù)帶答案解析
- 2026年煙臺(tái)工程職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能筆試參考題庫(kù)帶答案解析
- 2026年山東外貿(mào)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試參考題庫(kù)帶答案解析
- 2025-2030衛(wèi)星通信設(shè)備應(yīng)用場(chǎng)景政策導(dǎo)向技術(shù)標(biāo)準(zhǔn)復(fù)雜性市場(chǎng)細(xì)分
- 2025-2030醫(yī)療信息化系統(tǒng)接口標(biāo)準(zhǔn)化程度評(píng)估報(bào)告
- 2025-2030區(qū)塊鏈數(shù)字貨幣交易平臺(tái)行業(yè)市場(chǎng)供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030制造業(yè)投資風(fēng)險(xiǎn)資本運(yùn)作發(fā)展分析研究報(bào)告
- 2025-2030制造業(yè)升級(jí)技術(shù)研究與發(fā)展戰(zhàn)略研究報(bào)告
- 2025-2030制衣行業(yè)市場(chǎng)供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 云南省昭通市2024-2025學(xué)年七年級(jí)上學(xué)期期末歷史試題(含答案)
- 2025年度解除房屋租賃合同后的產(chǎn)權(quán)交接及費(fèi)用結(jié)算通知
- 教育機(jī)構(gòu)財(cái)務(wù)管理制度及報(bào)銷(xiāo)流程指南
- 2023-2024學(xué)年北京市海淀區(qū)八年級(jí)上學(xué)期期末考試物理試卷含詳解
- 四川省綿陽(yáng)市2024-2025學(xué)年高一上學(xué)期期末地理試題( 含答案)
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 醫(yī)院培訓(xùn)課件:《黃帝內(nèi)針臨床運(yùn)用》
- GB 21258-2024燃煤發(fā)電機(jī)組單位產(chǎn)品能源消耗限額
- 非ST段抬高型急性冠脈綜合征診斷和治療指南(2024)解讀
- 廣東省民間信仰活動(dòng)場(chǎng)所登記編號(hào)證樣式和填寫(xiě)說(shuō)明
- JB∕T 13026-2017 熱處理用油基淬火介質(zhì)
評(píng)論
0/150
提交評(píng)論