遼寧省凌源市第二中學2026屆高一上數(shù)學期末檢測模擬試題含解析_第1頁
遼寧省凌源市第二中學2026屆高一上數(shù)學期末檢測模擬試題含解析_第2頁
遼寧省凌源市第二中學2026屆高一上數(shù)學期末檢測模擬試題含解析_第3頁
遼寧省凌源市第二中學2026屆高一上數(shù)學期末檢測模擬試題含解析_第4頁
遼寧省凌源市第二中學2026屆高一上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省凌源市第二中學2026屆高一上數(shù)學期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的零點所在的區(qū)間為()A. B.C. D.2.已知全集,集合1,2,3,,,則A.1, B.C. D.3,3.關(guān)于函數(shù)的敘述中,正確的有()①的最小正周期為;②在區(qū)間內(nèi)單調(diào)遞增;③是偶函數(shù);④的圖象關(guān)于點對稱.A.①③ B.①④C.②③ D.②④4.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.5.命題“,”否定是()A., B.,C., D.,6.冪函數(shù)圖象經(jīng)過點,則的值為()A. B.C. D.7.已知函數(shù),則()A.﹣1 B.C. D.38.設(shè),則“”是“”的()條件A.必要不充分 B.充分不必要C.既不充分也不必要 D.充要9.若關(guān)于的方程在上有實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.10.已知函數(shù)滿足,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)和函數(shù)的圖像相交于三點,則的面積為__________.12.不等式的解集為_____________.13.函數(shù)的定義域是______14.已知,,則ab=_____________.15.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________16.已知非零向量、滿足,,在方向上的投影為,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱中,側(cè)棱垂直底面,,,點是棱的中點(1)證明:平面平面;(2)求三棱錐的體積18.如圖,在四棱錐中,底面為平行四邊形,,.(1)求證:;(2)若為等邊三角形,,平面平面,求四棱錐的體積.19.假設(shè)你有一筆資金用于投資,年后的投資回報總利潤為萬元,現(xiàn)有兩種投資方案的模型供你選擇.(1)請在下圖中畫出的圖像;(2)從總利潤的角度思考,請你選擇投資方案模型.20.計算下列各式的值.(1);(2).21.定義在上的函數(shù)滿足對于任意實數(shù),都有,且當時,,(1)判斷的奇偶性并證明;(2)判斷的單調(diào)性,并求當時,的最大值及最小值;(3)解關(guān)于的不等式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分析函數(shù)的單調(diào)性,再利用零點存在性定理判斷作答.【詳解】函數(shù)的定義域為,且在上單調(diào)遞增,而,,所以函數(shù)的零點所在的區(qū)間為.故選:C2、C【解析】可求出集合B,然后進行交集的運算,即可求解,得到答案【詳解】由題意,可得集合,又由,所以故選C【點睛】本題主要考查了集合的交集運算,其中解答中正確求解集合B,熟記集合的交集運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、C【解析】應(yīng)用差角余弦公式、二倍角正余弦公式及輔助角公式可得,再根據(jù)正弦型函數(shù)的性質(zhì),結(jié)合各項描述判斷正誤即可.【詳解】,∴最小正周期,①錯誤;令,則在上遞增,顯然當時,②正確;,易知為偶函數(shù),③正確;令,則,,易知的圖象關(guān)于對稱,④錯誤;故選:C4、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎(chǔ)題型.5、B【解析】根據(jù)命題的否定的定義判斷.【詳解】命題“,”的否定是:,故選:B6、D【解析】設(shè),由點冪函數(shù)上求出參數(shù)n,即可得函數(shù)解析式,進而求.【詳解】設(shè),又在圖象上,則,可得,所以,則.故選:D7、C【解析】先計算,再代入計算得到答案.【詳解】,則故選:【點睛】本題考查了分段函數(shù)的計算,意在考查學生的計算能力.8、B【解析】根據(jù)充分條件與必要條件的概念,可直接得出結(jié)果.【詳解】若,則,所以“”是“”的充分條件;若,則或,所以“”不是“”的必要條件;因此,“”是“”的充分不必要條件.故選:B【點睛】本題主要考查充分不必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.9、A【解析】當時,令,可得出,可得出,利用函數(shù)的單調(diào)性求出函數(shù)在區(qū)間上的值域,可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】當時,令,則,可得,設(shè),其中,任取、,則.當時,,則,即,所以,函數(shù)在上為減函數(shù);當時,,則,即,所以,函數(shù)在上為增函數(shù).所以,,,,則,故函數(shù)在上的值域為,所以,,解得.故選:A.10、B【解析】根據(jù)二次函數(shù)的對稱軸、開口方向確定正確選項.【詳解】依題意可知,二次函數(shù)的開口向下,對稱軸,,在上遞減,所以,即.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】解出三點坐標,即可求得三角形面積.【詳解】由題:,,所以,,所以,.故答案為:12、【解析】將不等式轉(zhuǎn)化為,利用指數(shù)函數(shù)的單調(diào)性求解.【詳解】不等式為,即,解得,所以不等式的解集為,故答案為:13、【解析】,即定義域為點睛:常見基本初等函數(shù)定義域的基本要求(1)分式函數(shù)中分母不等于零(2)偶次根式函數(shù)的被開方式大于或等于0.(3)一次函數(shù)、二次函數(shù)的定義域均為R.(4)y=x0的定義域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定義域均為R.(6)y=logax(a>0且a≠1)的定義域為(0,+∞)14、1【解析】將化成對數(shù)形式,再根據(jù)對數(shù)換底公式可求ab的值.【詳解】,.故答案為:1.15、-1【解析】由已知得,所以則,故答案.16、【解析】利用向量數(shù)量積的幾何意義得出,在等式兩邊平方可求出的值,然后利用平面向量數(shù)量積的運算律可計算出的值.【詳解】,在方向上的投影為,,,則,可得,因此,.故答案:.【點睛】本題考查平面向量數(shù)量積計算,涉及利用向量的模求數(shù)量積,同時也考查了向量數(shù)量積幾何意義的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)由題意得,,即可得到平面,從而得到⊥,再根據(jù),得到,證得平面,即可得證;(2)首先求出,利用勾股定理求出,即可求出,再根據(jù)錐體的體積公式計算可得【詳解】解:(1)證明:由題設(shè)知,,,平面,所以平面,又因為平面,所以因為,所以,即因為,平面,所以平面,又因為平面,所以平面平面(2)由,得,所以,所以,所以的面積,所以18、(1)詳見解析;(2)2【解析】(1)根據(jù)題意作于,連結(jié),可證得,于是,故,然后根據(jù)線面垂直的判定得到平面,于是可得所證結(jié)論成立.(2)由(1)及平面平面可得平面,故為四棱錐的高.又由題意可證得四邊形為有一個角為的邊長為的菱形,求得四邊形的面積后可得所求體積【詳解】(1)作于,連結(jié).∵,,是公共邊,∴,∴∵,∴,又平面,平面,,∴平面,又平面,∴(另法:證明,取的中點.)(2)∵平面平面,平面平面,,∴平面又為等邊三角形,,∴.又由題意得,,是公共邊,∴,∴,∴平行四邊形為有一個角為的邊長為的菱形,∴,∴四棱錐的體積【點睛】(1)證明空間中的垂直關(guān)系時,要注意三種垂直關(guān)系間的轉(zhuǎn)化,合理運用三種垂直關(guān)系進行求解,以達到求解的目的,同時在證題中要注意平面幾何知識的運用(2)立體幾何中的計算問題中往往涉及到證明,同時在證明中滲透著計算,計算時要注意中間量的求解,最后再結(jié)合面積、體積公式得到所求19、(1)作圖見解析(2)答案不唯一,具體見解析【解析】(1)根據(jù)指數(shù)函數(shù)描出幾個特殊點,用平滑的曲線連接即可.(2)結(jié)合(1)中的圖像,分析可得對于不同的值進行討論即可求解.【詳解】(1)(2)由圖可知當時,;當時,當時,;當時,;當時,;所以當資金投資2年或4年時兩種方案的回報總利潤相同;當資金投資2年以內(nèi)或4年以上,按照模型回報總利潤為最大;當資金投資2年以上到4年以內(nèi),按照模型回報總利潤最大.【點睛】本題考查了指數(shù)函數(shù)、二次函數(shù)模型的應(yīng)用,屬于基礎(chǔ)題.20、(1)125(2)0【解析】(1)按照指數(shù)運算進行計算即可;(2)按照對數(shù)運算進行計算即可;【小問1詳解】;【小問2詳解】.21、(1)奇函數(shù),證明見解析;(2)在上是減函數(shù).最大值為6,最小值為-6;(3)答案不唯一,見解析【解析】(1)令,求出,再令,由奇偶性的定義,即可判斷;(2)任取,則.由已知得,再由奇函數(shù)的定義和已知即可判斷單調(diào)性,由,得到,,再由單調(diào)性即可得到最值;(3)將原不等式轉(zhuǎn)化為,再由單調(diào)性,即得,即,再對b討論,分,,,,共5種情況分別求出它們的解集即可.【詳解】(1)令,則,即有,再令,得,則,故為奇函數(shù);(2)任取,則.由已知得,則,∴,∴在上是減函數(shù)由于,則,,.由在上是減函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論