版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省龍巖市龍巖九中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.展開式的第項(xiàng)為()A. B.C. D.2.若等比數(shù)列的前n項(xiàng)和,則r的值為()A. B.C. D.3.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.4.如圖,,是平面上兩點(diǎn),且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點(diǎn).若點(diǎn)A在以,為焦點(diǎn)的橢圓M上,則()A.點(diǎn)B和C都在橢圓M上 B.點(diǎn)C和D都在橢圓M上C.點(diǎn)D和E都在橢圓M上 D.點(diǎn)E和B都在橢圓M上5.已知為原點(diǎn),點(diǎn),以為直徑的圓的方程為()A. B.C. D.6.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.?dāng)?shù)列的通項(xiàng)公式是()A. B.C. D.8.已知關(guān)于的不等式的解集是,則的值是()A B.5C. D.79.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實(shí)現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個(gè)數(shù)是()①曲線C關(guān)于點(diǎn)(0,0)對稱;②曲線C關(guān)于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.310.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點(diǎn)平分的弦所在的直線方程為⑤已知過點(diǎn)的直線與圓的交點(diǎn)個(gè)數(shù)有2個(gè).A.①③④ B.②③④C.①③⑤ D.①②⑤11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.412.若實(shí)數(shù)滿足,則點(diǎn)不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.命題“若,則”的否命題為______14.已知橢圓的長軸在軸上,若焦距為4,則__________.15.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的x的取值范圍是_________.16.?dāng)?shù)列滿足前項(xiàng)和,則數(shù)列的通項(xiàng)公式為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,底面,.點(diǎn),,分別為棱,,的中點(diǎn),是線段的中點(diǎn),,(1)求證:平面;(2)求二面角的正弦值;(3)已知點(diǎn)在棱上,且直線與直線所成角的余弦值為,求線段的長18.(12分)已知直線過點(diǎn)(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標(biāo)軸的截距相等,求直線的方程19.(12分)已知拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),直線交拋物線E于兩點(diǎn)(1)求E的方程;(2)若以BC為直徑的圓過原點(diǎn)O,求直線l的方程20.(12分)已知直線與雙曲線相交于、兩點(diǎn).(1)當(dāng)時(shí),求;(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,說明理由.21.(12分)已知函數(shù),(1)求曲線在點(diǎn)處的切線方程;(2)若對任意的,恒成立,求實(shí)數(shù)的取值范圍22.(10分)冬奧會的全稱是冬季奧林匹克運(yùn)動(dòng)會,是世界規(guī)模最大的冬季綜合性運(yùn)動(dòng)會,每四年舉辦一屆.第24屆冬奧會將于2022年在中國北京和張家口舉行.為了弘揚(yáng)奧林匹克精神,增強(qiáng)學(xué)生的冬奧會知識,廣安市某中學(xué)校從全校隨機(jī)抽取50名學(xué)生參加冬奧會知識競賽,并根據(jù)這50名學(xué)生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學(xué)生競賽成績的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由展開式的通項(xiàng)公式求解即可【詳解】因?yàn)?,所以展開式的第項(xiàng)為,故選:B2、B【解析】利用成等比數(shù)列來求得.【詳解】依題意,等比數(shù)列的前n項(xiàng)和,,,所以.故選:B3、C【解析】分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點(diǎn)睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵4、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因?yàn)椋詸E圓M中,因?yàn)椋?,,所以D,E在橢圓M上.故選:C5、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒6、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B7、C【解析】根據(jù)數(shù)列前幾項(xiàng),歸納猜想出數(shù)列的通項(xiàng)公式.【詳解】依題意,數(shù)列的前幾項(xiàng)為:;;;……則其通項(xiàng)公式.故選C.【點(diǎn)睛】本小題主要考查歸納推理,考查數(shù)列通項(xiàng)公式的猜想,屬于基礎(chǔ)題.8、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因?yàn)殛P(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D9、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(diǎn)(-x,-y)代入后依然為,故曲線C關(guān)于原點(diǎn)對稱;②將點(diǎn)(y,x)代入后依然為,故曲線C關(guān)于y=x對稱;③曲線C在四個(gè)象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點(diǎn)最遠(yuǎn)的點(diǎn)的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯(cuò)誤.故選:C.10、C【解析】求出兩直線垂直時(shí)m值判斷①;由復(fù)合命題真值表可判斷②;化簡不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗(yàn)證判斷④;判定點(diǎn)與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個(gè)是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點(diǎn),④不正確;點(diǎn)在圓上,則直線與圓至少有一個(gè)公共點(diǎn),而過點(diǎn)與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個(gè)交點(diǎn),⑤正確,所以所有真命題的序號是①③⑤.故選:C11、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.12、B【解析】作出給定的不等式組表示的平面區(qū)域,觀察圖形即可得解.【詳解】因?qū)崝?shù)滿足,作出不等式組表示的平面區(qū)域,如圖中陰影部分,觀察圖形知,陰影區(qū)域不過第二象限,即點(diǎn)不可能落在第二象限.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解析】否命題是對命題的條件和結(jié)論同時(shí)否定,同時(shí)否定和即可.命題“若,則”的否命題為:若,則考點(diǎn):四種命題.14、8【解析】根據(jù)橢圓方程列方程,解得結(jié)果.【詳解】因?yàn)闄E圓的長軸在軸上,焦距為4,所以故答案為:8【點(diǎn)睛】本題考查根據(jù)橢圓方程求參數(shù),考查基本分析求解能力,屬基礎(chǔ)題.15、【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:16、【解析】由已知中前項(xiàng)和,結(jié)合,分別討論時(shí)與時(shí)的通項(xiàng)公式,并由時(shí),的值不滿足時(shí)的通項(xiàng)公式,故要將數(shù)列的通項(xiàng)公式寫成分段函數(shù)的形式【詳解】∵數(shù)列前項(xiàng)和,∴當(dāng)時(shí),,又∵當(dāng)時(shí),,故,故答案為.【點(diǎn)睛】本題考查的知識點(diǎn)是等差數(shù)列的通項(xiàng)公式,其中正確理解由數(shù)列的前n項(xiàng)和Sn,求通項(xiàng)公式的方法和步驟是解答本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.首先要建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo),證明線面平行只需求出平面的法向量,計(jì)算直線對應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個(gè)半平面對應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點(diǎn),分別以,,方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因?yàn)槠矫鍮DE,所以MN//平面BDE.(2)解:易知為平面CEM的一個(gè)法向量.設(shè)為平面EMN的法向量,則,因?yàn)?,,所?不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進(jìn)而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點(diǎn)】直線與平面平行、二面角、異面直線所成角【名師點(diǎn)睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準(zhǔn),特別是借助平面的法向量求線面角,二面角或點(diǎn)到平面的距離都很容易.18、(1)(2)或【解析】(1)由兩條直線垂直可設(shè)直線的方程為,將點(diǎn)的坐標(biāo)代入計(jì)算即可;(2)當(dāng)直線過原點(diǎn)時(shí),根據(jù)直線的點(diǎn)斜式方程即可得出結(jié)果;當(dāng)直線不過原點(diǎn)時(shí)可設(shè)直線的方程為,將點(diǎn)的坐標(biāo)代入計(jì)算即可.【小問1詳解】解:因?yàn)橹本€與直線垂直所以,設(shè)直線的方程為,因?yàn)橹本€過點(diǎn),所以,解得,所以直線的方程為【小問2詳解】解:當(dāng)直線過原點(diǎn)時(shí),斜率為,由點(diǎn)斜式求得直線的方程是,即當(dāng)直線不過原點(diǎn)時(shí),設(shè)直線的方程為,把點(diǎn)代入方程得,所以直線的方程是綜上,所求直線的方程為或19、(1);(2).【解析】(1)利用橢圓的焦點(diǎn)與拋物線的焦點(diǎn)相同,列出方程求解即可(2)設(shè),、,,聯(lián)立直線與拋物線方程,利用韋達(dá)定理,通過,求出,得到直線方程【小問1詳解】由題意知:,,∴的方程是【小問2詳解】設(shè),、,,由題意知,由,得,∴,,,∵以為直徑的圓過點(diǎn),∴,即,∴,解得,∴直線的方程是20、(1);(2)不存在,理由見解析.【解析】(1)當(dāng)時(shí),將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長公式可求得;(2)假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出,即可得出結(jié)論.【小問1詳解】解:設(shè)點(diǎn)、,當(dāng)時(shí),聯(lián)立,可得,,由韋達(dá)定理可得,,所以,.【小問2詳解】解:假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達(dá)定理可知,因?yàn)橐詾橹睆降膱A經(jīng)過坐標(biāo)原點(diǎn),則,所以,,整理可得,該方程無實(shí)解,故不存在.21、(1);(2).【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算,,求出切線方程即可;(2)問題轉(zhuǎn)化為,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京市平谷區(qū)政務(wù)服務(wù)中心綜合工作人員招聘參考題庫新版
- 首都醫(yī)科大學(xué)附屬北京潞河醫(yī)院招聘49人備考題庫必考題
- 揚(yáng)州市公安局邗江分局公開招聘警務(wù)輔助人員35人備考題庫必考題
- 貴州國企招聘:2026貴州省盤州市第二酒廠招聘4人備考題庫完美版
- 2026陜西氫能產(chǎn)業(yè)發(fā)展有限公司所屬單位招聘(29人)參考題庫含答案
- 廣東匯源通集團(tuán)有限公司2026校園招聘參考題庫完美版
- 2026青島市嶗山區(qū)某國有企業(yè)招聘4人參考題庫必考題
- 常州市公安局鐘樓分局公開招聘警務(wù)輔助人員20人參考題庫附答案
- 浙江國企招聘-2026臺州玉環(huán)市城建開發(fā)有限公司招聘參考題庫及答案1套
- 永豐縣民政局2026年面向社會公開招聘編外工作人員參考題庫及答案1套
- 工作簡歷模板
- 北京石景山區(qū)2023-2024學(xué)年第一學(xué)期初三期末數(shù)學(xué)試卷
- 湖南省長沙市雨花區(qū)2023-2024學(xué)年五年級上學(xué)期語文期末考試試卷
- DZ∕T 0207-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 硅質(zhì)原料類(正式版)
- 箱式房拆方案
- YS-T 650-2020 醫(yī)用氣體和真空用無縫銅管
- 四川省內(nèi)江市2023-2024學(xué)年高二上學(xué)期期末檢測生物試題【含答案解析】
- 總承包工程技術(shù)標(biāo)述標(biāo)匯報(bào)
- TY/T 4001.1-2018汽車自駕運(yùn)動(dòng)營地建設(shè)要求與開放條件
- GB/T 19022-2003測量管理體系測量過程和測量設(shè)備的要求
- 人工智能與教育的深度融合課件
評論
0/150
提交評論