2026屆浙江省重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2026屆浙江省重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2026屆浙江省重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2026屆浙江省重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2026屆浙江省重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆浙江省重點(diǎn)中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.142.設(shè)a,b,c分別是內(nèi)角A,B,C的對(duì)邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列3.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.24.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級(jí)四個(gè)班的182人中隨機(jī)抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機(jī)剔除的個(gè)數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,25.早在古希臘時(shí)期,亞歷山大的科學(xué)家赫倫就發(fā)現(xiàn):光從一點(diǎn)直接傳播到另一點(diǎn)選擇最短路徑,即這兩點(diǎn)間的線段.若光從一點(diǎn)不是直接傳播到另一點(diǎn),而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點(diǎn),仍然選擇最短路徑.已知曲線,且將假設(shè)為能起完全反射作用的曲面鏡,若光從點(diǎn)射出,經(jīng)由上一點(diǎn)反射到點(diǎn),則()A. B.C. D.6.等差數(shù)列中,已知,則()A.36 B.27C.18 D.97.已知,是雙曲線的左右焦點(diǎn),過(guò)的直線與曲線的右支交于兩點(diǎn),則的周長(zhǎng)的最小值為()A. B.C. D.8.執(zhí)行下圖所示的程序框圖,則輸出的值為()A.5 B.6C.7 D.89.將函數(shù)圖象上所有點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則()A. B.C. D.10.已知雙曲線,過(guò)左焦點(diǎn)且與軸垂直的直線與雙曲線交于、兩點(diǎn),若弦的長(zhǎng)恰等于實(shí)鈾的長(zhǎng),則雙曲線的離心率為()A. B.C. D.11.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.12.已知過(guò)拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為()A. B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,則向量在坐標(biāo)平面上的投影向量是__________14.已知,滿足約束條件則的最小值為_(kāi)_________15.直線與直線平行,則m的值是__________16.橢圓C:的左、右焦點(diǎn)分別為,,P為橢圓上異于左右頂點(diǎn)的任意一點(diǎn),、的中點(diǎn)分別為M、N,O為坐標(biāo)原點(diǎn),四邊形OMPN的周長(zhǎng)為4,則的周長(zhǎng)是_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓(1)若一直線被圓C所截得的弦的中點(diǎn)為,求該直線的方程;(2)設(shè)直線與圓C交于A,B兩點(diǎn),把的面積S表示為m的函數(shù),并求S的最大值18.(12分)已知橢圓的左、右焦點(diǎn)分別是,點(diǎn)P是橢圓C上任一點(diǎn),若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點(diǎn),若過(guò)點(diǎn)且斜率不為0的直線交C于M,N兩點(diǎn),證明:直線與的交點(diǎn)在一條定直線上19.(12分)已知數(shù)列的前項(xiàng)和為,且.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m,交橢圓于A,B兩個(gè)不同點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)求m的取值范圍;(Ⅲ)求證直線MA,MB與x軸始終圍成一個(gè)等腰三角形.21.(12分)已知等比數(shù)列前3項(xiàng)和為(1)求的通項(xiàng)公式;(2)若對(duì)任意恒成立,求m的取值范圍22.(10分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點(diǎn)M在線段上,且,試問(wèn)在線段上是否存在一點(diǎn)N,滿足平面,若存在求的值,若不存在,請(qǐng)說(shuō)明理由?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用等比數(shù)列的基本量進(jìn)行計(jì)算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B2、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對(duì)邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點(diǎn)睛】本題考查三個(gè)數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,屬于中檔題.3、D【解析】由,然后根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算即可求解.【詳解】解:因,,所以,因?yàn)椋?,即,解得,故選:D.4、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機(jī)剔除人.故選:A.5、B【解析】記橢圓的右焦點(diǎn)為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點(diǎn)為,根據(jù)橢圓的定義可得,,所以,因?yàn)?,?dāng)且僅當(dāng)三點(diǎn)共線時(shí),,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點(diǎn)睛】思路點(diǎn)睛:求解橢圓上動(dòng)點(diǎn)到一焦點(diǎn)和一定點(diǎn)距離和的最小值或差的最大值時(shí),一般需要利用橢圓的定義,將問(wèn)題轉(zhuǎn)化為動(dòng)點(diǎn)與另一焦點(diǎn)以及該定點(diǎn)距離和的最值問(wèn)題來(lái)求解即可.6、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B7、C【解析】根據(jù)雙曲線的定義和性質(zhì),當(dāng)弦垂直于軸時(shí),即可求出三角形的周長(zhǎng)的最小值.【詳解】由雙曲線可知:的周長(zhǎng)為.當(dāng)軸時(shí),周長(zhǎng)最小值為故選:C8、C【解析】直接按照程序框圖運(yùn)行即可得正確答案.【詳解】當(dāng)時(shí),不成立,時(shí),不成立,時(shí),不成立,時(shí),不成立,時(shí),不成立,時(shí),不成立,時(shí),不成立,時(shí),成立,輸出的值為,故選:C.9、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長(zhǎng)度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A10、B【解析】求出,進(jìn)而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長(zhǎng)恰等于實(shí)軸的長(zhǎng),,,故選:B11、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A12、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.【點(diǎn)睛】本題考察拋物線中的最值問(wèn)題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問(wèn)題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)投影向量的知識(shí)求得正確答案.【詳解】空間向量在坐標(biāo)平面上的投影向量是.故答案為:14、2【解析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標(biāo)函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動(dòng),當(dāng)移到頂點(diǎn)時(shí),在軸上的截距最小,即.15、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.16、【解析】先證明則四邊形OMPN是平行四邊形,進(jìn)而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因?yàn)镸,O,N分別為的中點(diǎn),所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長(zhǎng)為4可知,,即,則,于是的周長(zhǎng)是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長(zhǎng)與d的關(guān)系,利用基本不等式求出的面積S的最大值【小問(wèn)1詳解】圓化為標(biāo)準(zhǔn)方程為:.則.設(shè)所求的直線為m.由圓的幾何性質(zhì)可知:,所以,所以所求的直線為:,即.【小問(wèn)2詳解】設(shè)圓心C到直線l的距離為d,則,且,所以因?yàn)橹本€與圓C交于A,B兩點(diǎn),所以,解得:且.而的面積:因?yàn)樗裕ㄆ渲袝r(shí)等號(hào)成立).所以S的最大值為.18、(1);(2)證明見(jiàn)解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設(shè)直線MN的方程為x=my+1,設(shè),用“設(shè)而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點(diǎn)在直線上.【小問(wèn)1詳解】由題意可得:,解得:,所以C的方程為.【小問(wèn)2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設(shè)直線MN的方程為x=my+1.設(shè),由,消去y得:,所以.所以.因?yàn)橹本€AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點(diǎn)在直線上.【點(diǎn)睛】(1)待定系數(shù)法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)"設(shè)而不求"是一種在解析幾何中常見(jiàn)的解題方法,可以解決直線與二次曲線相交的問(wèn)題.19、(1);(2).【解析】(1)利用,結(jié)合已知條件,即可容易求得通項(xiàng)公式;(2)根據(jù)(1)中所求,對(duì)數(shù)列進(jìn)行裂項(xiàng)求和,即可求得.【小問(wèn)1詳解】當(dāng)時(shí),.當(dāng)時(shí),,因?yàn)楫?dāng)時(shí),,所以.【小問(wèn)2詳解】因?yàn)椋?,故?shù)列的前項(xiàng)和.20、(Ⅰ);(Ⅱ)且;(Ⅲ)證明見(jiàn)解析.【解析】(Ⅰ)設(shè)出橢圓方程,根據(jù)題意得出關(guān)于的方程組,從而求得橢圓的方程;(Ⅱ)根據(jù)題意設(shè)出直線方程,并與橢圓方程聯(lián)立消元,根據(jù)直線與橢圓方程有兩個(gè)不同交點(diǎn),利用即可求出m取值范圍;(Ⅲ)設(shè)直線MA,MB的斜率分別為k1,k2,根據(jù)題意把所證問(wèn)題轉(zhuǎn)化為證明k1+k2=0即可.【詳解】(1)設(shè)橢圓方程為,由題意可得,解得,∴橢圓方程為;(Ⅱ)∵直線l平行于OM,且在y軸上的截距為m,,所以設(shè)直線的方程為,由消元,得∵直線l與橢圓交于A,B兩個(gè)不同點(diǎn),所以,解得,所以m的取值范圍為.(Ⅲ)設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可,設(shè),由(Ⅱ)可知,則,由,而,,故直線MA,MB與x軸始終圍成一個(gè)等腰三角形.21、(1)(2)【解析】(1)由等比數(shù)列的基本量,列式,即可求得首項(xiàng)和公比,再求通項(xiàng)公式;(2)由題意轉(zhuǎn)化為求數(shù)列的前項(xiàng)和的最大值,即可求參數(shù)的取值范圍.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為,則,①,即,得,即,代入①得,解得:,所以;【小問(wèn)2詳解】由(1)可知,數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,,若對(duì)任意恒成立,即,數(shù)列,,單調(diào)遞增,的最大值無(wú)限趨近于4,所以22、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論