版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆湖南省江西省廣東省名校高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的左頂點(diǎn)為,右焦點(diǎn),若直線與該雙曲線交于、兩點(diǎn),為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.2.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.43.若橢圓的弦恰好被點(diǎn)平分,則所在的直線方程為()A. B.C. D.4.在空間直角坐標(biāo)系中,已知,,則MN的中點(diǎn)P到坐標(biāo)原點(diǎn)О的距離為()A. B.C.2 D.35.由小到大排列的一組數(shù)據(jù):,其中每個(gè)數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.6.已知直線與平行,則系數(shù)()A. B.C. D.7.將函數(shù)圖象上所有點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,則()A. B.C. D.8.下列直線中,傾斜角為45°的是()A. B.C. D.9.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離10.已知點(diǎn),是橢圓:的左、右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.11.下邊程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,如果輸入a=102,b=238,則輸出的a的值為()A.17 B.34C.36 D.6812.已知雙曲線C:的右焦點(diǎn)為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖象上有一點(diǎn),則曲線在點(diǎn)處的切線方程為______.14.若直線的方向向量為,平面的一個(gè)法向量為,則直線與平面所成角的正弦值為______.15.已知正三棱柱中,底面積為,一個(gè)側(cè)面的周長為,則正三棱柱外接球的表面積為______.16.過橢圓的一個(gè)焦點(diǎn)的弦與另一個(gè)焦點(diǎn)圍成的的周長是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求在區(qū)間上的最值.18.(12分)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.19.(12分)如圖所示的四棱錐的底面是一個(gè)等腰梯形,,且,是△的中線,點(diǎn)E是棱的中點(diǎn)(1)證明:∥平面(2)若平面平面,且,求平面與平面夾角余弦值(3)在(2)條件下,求點(diǎn)D到平面的距離20.(12分)已知點(diǎn),圓(1)若過點(diǎn)的直線與圓相切,求直線的方程;(2)若直線與圓相交于A,兩點(diǎn),弦的長為,求的值21.(12分)已知橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點(diǎn),且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.22.(10分)已知正項(xiàng)等差數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點(diǎn)、關(guān)于軸對(duì)稱,且為線段的中點(diǎn),則,又因?yàn)闉榈妊苯侨切?,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.2、A【解析】根據(jù)等差數(shù)列性質(zhì)可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項(xiàng)公式可得解得故選:A3、D【解析】判斷點(diǎn)M與橢圓的位置關(guān)系,再借助點(diǎn)差法求出直線AB的斜率即可計(jì)算作答.【詳解】顯然點(diǎn)橢圓內(nèi),設(shè)點(diǎn),依題意,,兩式相減得:,而弦恰好被點(diǎn)平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D4、A【解析】利用中點(diǎn)坐標(biāo)公式及空間中兩點(diǎn)之間的距離公式可得解.【詳解】,,由中點(diǎn)坐標(biāo)公式,得,所以.故選:A5、C【解析】先根據(jù)題意對(duì)數(shù)據(jù)進(jìn)行排列,然后由中位數(shù)的定義求解即可【詳解】因?yàn)橛尚〉酱笈帕械囊唤M數(shù)據(jù):,其中每個(gè)數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C6、B【解析】由直線的平行關(guān)系可得,解之可得【詳解】解:直線與直線平行,,解得故選:7、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A8、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對(duì)于A,直線斜率為,對(duì)于B,直線無斜率,對(duì)于C,直線斜率,對(duì)于D,直線斜率,故選:C9、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對(duì)圓,其圓心,半徑;對(duì)圓,其圓心,半徑;又,故兩圓外切.故選:A.10、D【解析】設(shè),先求出點(diǎn),得,化簡即得解【詳解】由題意可知橢圓的焦點(diǎn)在軸上,如圖所示,設(shè),則,∵為等腰三角形,且,∴.過作垂直軸于點(diǎn),則,∴,,即點(diǎn).∵點(diǎn)在過點(diǎn)且斜率為的直線上,∴,解得,∴.故選:D【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關(guān)于離心率的方程解方程即得解).11、B【解析】根據(jù)程序框圖所示代入運(yùn)行即可.【詳解】初始輸入:;第一次運(yùn)算:;第二次運(yùn)算:;第三次運(yùn)算:;第四次運(yùn)算:;結(jié)束,輸出34.故選:B.12、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點(diǎn)到漸近線的距離為,因?yàn)橄议L為,圓半徑為,所以,即,因?yàn)椋?,則雙曲線的離心率為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)求得為增函數(shù),根據(jù),求得,進(jìn)而求得,得出即在點(diǎn)處的切線的斜率,再利用直線的點(diǎn)斜式方程,即可求解【詳解】由題意,點(diǎn)在曲線上,可得,又由函數(shù),則,所以函數(shù)在上為增函數(shù),且,所以,因?yàn)?,所以,即在點(diǎn)處的切線的斜率為2,所以曲線在點(diǎn)的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解曲線在某點(diǎn)處的切線方程,其中解答中熟記導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算公式,結(jié)合直線的點(diǎn)斜式方程是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力14、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:15、【解析】首先由條件求出底面邊長和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為,則點(diǎn)為正三棱柱外接球的球心,然后求出的長度即可.【詳解】如圖所示,設(shè)底面邊長為,則底面面積為,所以,因此等邊三角形的高為:,因?yàn)橐粋€(gè)側(cè)面的周長為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為則點(diǎn)為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.16、【解析】求得,利用橢圓的定義可得出的周長.【詳解】在橢圓中,,由題意可知,的周長為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在、上是增函數(shù),在上是減函數(shù);(2)在區(qū)間,上的最大值為2,最小值為【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間;(2)根據(jù)(1)可知,函數(shù)在,、上為增函數(shù),在上為減函數(shù),求出端點(diǎn)值和極值,比較即可求出最值【小問1詳解】根據(jù)題意,由于,,得到,,在、上是增函數(shù),當(dāng)時(shí),在上是減函數(shù);【小問2詳解】由(1)可知,函數(shù)在,,上為增函數(shù),在上為減函數(shù),,(1),,,在區(qū)間,上的最大值為2,最小值為18、(1)(2)證明見解析【解析】(1)當(dāng)時(shí),,求出,可得答案;(2)設(shè),,,,,設(shè),求出利用單調(diào)性可得答案.【小問1詳解】當(dāng)時(shí),,則,所以單調(diào)遞增,又,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以.【小問2詳解】設(shè),若,則,若,則,設(shè),則,所以單調(diào)遞增,又,當(dāng)時(shí),,上單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,所以,綜上,恒成立.【點(diǎn)睛】本題考查了求函數(shù)值域或最值的問題,一般都需要通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值來處理,特別的要根據(jù)所求問題,適時(shí)構(gòu)造恰當(dāng)?shù)暮瘮?shù),再利用所構(gòu)造函數(shù)的單調(diào)性、最值解決問題是常用方法,考查了學(xué)生分析問題、解決問題的能力.19、(1)證明見解析;(2);(3).【解析】(1)連接、,平行四邊形的性質(zhì)、線面平行的判定可得平面、平面,再根據(jù)面面平行的判定可得平面平面,利用面面平行的性質(zhì)可證結(jié)論;(2)取的中點(diǎn)為,連接,證明出平面,,以為坐標(biāo)原點(diǎn),、、的方向分別為軸、軸、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值.(3)利用等體積法,求D到平面的距離【小問1詳解】連接、,由、分別是棱、的中點(diǎn),則,平面,平面,則平面又,且,∴且,四邊形是平行四邊形,則,平面,平面,則平面又,可得平面平面.又平面∴平面【小問2詳解】由知:,又平面平面,平面平面,平面,∴平面取的中點(diǎn)為,連接、,由且,故四邊形為平行四邊形,故,則△為等邊三角形,故,以為坐標(biāo)原點(diǎn),、、的方向分別為軸、軸、軸的正方向建立如圖所示的空間直角坐標(biāo)系易知,,所以、、、、,,,,設(shè)平面的法向量為,則,令,得設(shè)平面的法向量為,則,令,得設(shè)平面與平面所成的銳二面角為.則,即平面與平面所成銳二面角的余弦值為【小問3詳解】由(2)知:平面,則是三棱錐的高且,四邊形為平行四邊形,又,即為菱形,∴,而,則,且,∴,故.又,由上易知:△為等腰三角形且,∴,則D到平面的距離.20、(1)或;(2)【解析】(1)分直線斜率存在和不存在兩種情況分析,當(dāng)當(dāng)過點(diǎn)的直線存在斜率時(shí),設(shè)方程為,利用圓心到直線的距離等于半徑求得k,即可得出答案;(2)求出圓心到直線的距離,再根據(jù)圓的弦長公式即可得出答案.【詳解】解:(1)由題意知圓心的坐標(biāo)為,半徑,當(dāng)過點(diǎn)的直線斜率不存在時(shí),方程為,由圓心到直線的距離知,直線與圓相切,當(dāng)過點(diǎn)的直線存在斜率時(shí),設(shè)方程為,即由題意知,解得,直線的方程為故過點(diǎn)的圓的切線方程為或(2)圓心到直線的距離為,,解得21、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據(jù)D的離心率為,求出從而求出雙曲線的焦點(diǎn),再由橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)相同,即可求出,即可求出C與D的方程;(2)①根據(jù)題意容易得出,然后聯(lián)立方程,消元,利用即可求出m的取值范圍;②設(shè),由①得:,計(jì)算出,判斷其是否為定值即可.【詳解】解:(1)因?yàn)镈的離心率為,即,解得:,所以D的方程為:;焦點(diǎn)坐標(biāo)為,又因橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)相同,所以,所以,所以C的方程為:;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 油乳制備工崗前理論實(shí)踐考核試卷含答案
- 貨運(yùn)業(yè)務(wù)信息員變更管理評(píng)優(yōu)考核試卷含答案
- 陶瓷原料準(zhǔn)備工崗前規(guī)章考核試卷含答案
- 石英晶體振蕩器制造工崗前崗中考核試卷含答案
- 機(jī)動(dòng)車駕駛教練員安全實(shí)踐水平考核試卷含答案
- 兒子和父母協(xié)議書有效
- 19.1 二次根式及其性質(zhì)(第1課時(shí))-課件
- 油料計(jì)量員創(chuàng)新意識(shí)強(qiáng)化考核試卷含答案
- 假牙清潔劑制造工安全生產(chǎn)知識(shí)評(píng)優(yōu)考核試卷含答案
- 煉鋼準(zhǔn)備工安全教育知識(shí)考核試卷含答案
- 醫(yī)院醫(yī)療保險(xiǎn)費(fèi)用審核制度
- 村衛(wèi)生室醫(yī)療質(zhì)量相關(guān)管理制度
- 【蘇州工學(xué)院智能建造研究院】2025中國低空經(jīng)濟(jì)產(chǎn)業(yè)鏈全面解析報(bào)告
- 中小學(xué)校園中匹克球推廣策略與實(shí)踐研究
- 個(gè)人與團(tuán)隊(duì)管理-形考任務(wù)3(客觀題10分)-國開-參考資料
- 車間現(xiàn)場(chǎng)管理崗位職責(zé)模版(2篇)
- 農(nóng)村宅基地父母繼承協(xié)議書
- 【MOOC】生物化學(xué)與分子生物學(xué)-華中科技大學(xué) 中國大學(xué)慕課MOOC答案
- 地下室頂板堆載及回頂方案
- 廣東省2024年修訂醫(yī)療服務(wù)價(jià)格項(xiàng)目表
- 藥品經(jīng)營質(zhì)量管理規(guī)范
評(píng)論
0/150
提交評(píng)論