上海市虹口高級中學2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
上海市虹口高級中學2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
上海市虹口高級中學2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
上海市虹口高級中學2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
上海市虹口高級中學2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市虹口高級中學2026屆高二上數(shù)學期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直2.若拋物線的焦點與橢圓的左焦點重合,則m的值為()A.4 B.-4C.2 D.-23.已知一質(zhì)點的運動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.4.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.5.已知為虛數(shù)單位,復數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.6.若數(shù)列滿足,則數(shù)列的通項公式為()A. B.C. D.7.雙曲線型自然通風塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.8.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大9.已知方程表示雙曲線,則實數(shù)的取值范圍是()A.或 B.C. D.10.在四面體OABC中,點M在線段OA上,且,N為BC中點,已知,,,則等于()A. B.C. D.11.在空間直角坐標系中,若,,則點B的坐標為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)12.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,若,則______.14.向量,,若,且,則的值為______.15.由曲線圍成的圖形的面積為________16.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中“落霞與孤鶩齊飛,秋水共長天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點,,處測得閣頂端點的仰角分別為,,.且米,則滕王閣高度___________米.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,離心率.(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于A、B兩點,求.18.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.19.(12分)已知橢圓經(jīng)過點,橢圓E的一個焦點為(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于A,B兩點.求的最大值20.(12分)已知橢圓上的點到橢圓焦點的最大距離為3,最小距離為1(1)求橢圓的標準方程;(2)已知,分別是橢圓的左右頂點,是橢圓上異于,的任意一點,直線,分別交軸于點,,求的值21.(12分)已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.22.(10分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列前項和.注:如果選擇多個條件分別解答,按第一個解答計分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.2、B【解析】根據(jù)拋物線和橢圓焦點與其各自標準方程的關(guān)系即可求解.【詳解】由題可知拋物線焦點為,橢圓左焦點為,∴.故選:B.3、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點在第1秒末的瞬時速度為.故選:C4、B【解析】設(shè),進而根據(jù)題意,結(jié)合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B5、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因為為純虛數(shù),所以,解得,所以的虛部為:.故選:D.6、D【解析】由,分兩步,當求出,當時得到,兩式作差即可求出數(shù)列的通項公式;【詳解】解:因為①,當時,,當時②,①②得,所以,當時也成立,所以;故選:D7、A【解析】以的中點О為坐標原點,建立平面直角坐標系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進而求得雙曲線的離心率.【詳解】以的中點О為坐標原點,建立如圖所示的平面直角坐標系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷8、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.9、A【解析】根據(jù)雙曲線標準方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A10、B【解析】根據(jù)空間向量基本定理結(jié)合已知條件求解【詳解】因為N為BC中點,所以,因為M在線段OA上,且,所以,所以,故選:B11、C【解析】利用點的坐標表示向量坐標,即可求解.【詳解】設(shè),,,所以,,,解得:,,,即.故選:C12、A【解析】由,當三點共線時,取得最值【詳解】設(shè)是橢圓的右焦點,則又因為,,所以,則故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】依據(jù)向量垂直充要條件列方程,解之即可解決.【詳解】空間向量,,由,可知,即,解之得故答案為:214、【解析】根據(jù)可求出,再根據(jù)向量垂直即可求出,即可得出答案.【詳解】因為,,所以,解得,又因為,所以,解得,所以.故答案為:.15、【解析】曲線圍成的圖形關(guān)于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于關(guān)于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.16、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進而可得長.【詳解】設(shè),因為,,,所以,,,.在中,,即①.,在中,,即②,因為,所以①②兩式相加可得:,解得:,則,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意得,,再結(jié)合即可求得答案.(2)設(shè),,直接聯(lián)立方程得,再結(jié)合韋達定理,利用弦長公式和點到線的距離公式得,點M到直線的距離,進而可得.【詳解】解:(1)由題意得,,結(jié)合,解得所以橢圓的方程為:.(2)由得即,經(jīng)驗證.設(shè),.所以,,故因為點M到直線的距離,所以.【點睛】本題考查直線與橢圓位置關(guān)系,橢圓的方程,弦長公式等,考查運算能力,是基礎(chǔ)題.18、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,求出的坐標以及平面的一個法向量,計算即可求解;(2)假設(shè)線段上存在點符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,如圖所示:則,,,.不妨設(shè)平面的一個法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點,使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.19、(1);(2).【解析】(1)利用代入法,結(jié)合焦點的坐標、橢圓中的關(guān)系進行求解即可;(2)根據(jù)直線l是否存在斜率分類討論,結(jié)合一元二次方程根的判別式、根與系數(shù)關(guān)系、弦長公式、基本不等式進行求解即可.【小問1詳解】依題意:,解得,,∴橢圓E的方程為;【小問2詳解】當直線l的斜率存在時,設(shè),,由得由得.由,得當且僅當,即時等號成立當直線l的斜率不存在時,,∴的最大值為20、(1);(2)-1.【解析】(1)根據(jù)橢圓的性質(zhì)進行求解即可;(2)根據(jù)直線的方程,結(jié)合平面向量數(shù)量積的坐標表示公式進行求解即可.【小問1詳解】由題意得,,,所以,橢圓.【小問2詳解】由題意可知,,設(shè),則,直線,直線分別令得,,,.【點睛】關(guān)鍵點睛:運用平面向量數(shù)量積的坐標表示公式進行求解是解題的關(guān)鍵.21、(1)(2)【解析】(1)利用二倍角公式將已知轉(zhuǎn)化為正弦函數(shù),解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圓半徑的最小值,然后可解.【小問1詳解】因為,所以,解得或(舍去),又為銳角三角形,所以.【小問2詳解】因為,當且僅當時,等號成立,所以.外接圓的半徑,故外接圓面積的最小值為.22、(1)(2)【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論