福建省華安一中、長泰一中等四校2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第1頁
福建省華安一中、長泰一中等四校2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第2頁
福建省華安一中、長泰一中等四校2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第3頁
福建省華安一中、長泰一中等四校2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第4頁
福建省華安一中、長泰一中等四校2026屆高二上數(shù)學(xué)期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省華安一中、長泰一中等四校2026屆高二上數(shù)學(xué)期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題P:,,則命題P的否定為()A., B.,C., D.,2.已知圓的方程為,則實數(shù)m的取值范圍是()A. B.C. D.3.過兩點和的直線的斜率為()A. B.C. D.4.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.5.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,6.拋物線的焦點到準線的距離為()A. B.C. D.17.如圖在中,,,在內(nèi)作射線與邊交于點,則使得的概率是()A. B.C. D.8.兩個圓和的位置是關(guān)系是()A.相離 B.外切C.相交 D.內(nèi)含9.在四面體中,空間的一點滿足,若共面,則()A. B.C. D.10.設(shè),,,則,,大小關(guān)系為A. B.C. D.11.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.12.已知橢圓的左、右焦點分別為,,直線過且與橢圓相交于不同的兩點,、不在軸上,那么△的周長()A.是定值B.是定值C.不是定值,與直線的傾斜角大小有關(guān)D.不是定值,與取值大小有關(guān)二、填空題:本題共4小題,每小題5分,共20分。13.已知點為雙曲線,右支上一點,,為雙曲線的左、右焦點,點為線段上一點,的角平分線與線段交于點,且滿足,則________;若為線段的中點且,則雙曲線的離心率為________14.已知函數(shù)有兩個極值點,則實數(shù)a的取值范圍為________.15.已知數(shù)列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為____________.16.在平面直角坐標系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若,為整數(shù),且當時,恒成立,求的最大值.(其中為的導(dǎo)函數(shù).)18.(12分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值19.(12分)若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.20.(12分)已知函數(shù),曲線在處的切線方程為.(Ⅰ)求實數(shù),的值;(Ⅱ)求在區(qū)間上的最值.21.(12分)設(shè)AB是過拋物線焦點F的弦,若,,求證:(1);(2)(為弦AB的傾斜角)22.(10分)已知等差數(shù)列前n項和為,,,若對任意的正整數(shù)n成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B2、C【解析】根據(jù)可求得結(jié)果.【詳解】因為表示圓,所以,解得.故選:C【點睛】關(guān)鍵點點睛:掌握方程表示圓的條件是解題關(guān)鍵.3、D【解析】應(yīng)用兩點式求直線斜率即可.【詳解】由已知坐標,直線的斜率為.故選:D4、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因為內(nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.5、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關(guān)鍵是掌握牢記三角函數(shù)定義并能夠熟練應(yīng)用,屬于基礎(chǔ)題6、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關(guān)基本量,屬于基礎(chǔ)題.7、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎(chǔ)題8、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關(guān)系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關(guān)系是相交,故選:C.【點睛】本題考查兩圓的位置關(guān)系,關(guān)鍵在于運用判定兩圓的位置關(guān)系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關(guān)系,屬于基礎(chǔ)題.9、D【解析】根據(jù)四點共面的向量表示,可得結(jié)果.【詳解】由共面知,故選:【點睛】本題主要考查空間中四點共面的向量表示,屬基礎(chǔ)題.10、C【解析】由,可得,,故選C.考點:指數(shù)函數(shù)性質(zhì)11、B【解析】根據(jù)給定條件建立空間直角坐標系,令,用表示出點E,F(xiàn)坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B12、B【解析】由直線過且與橢圓相交于不同的兩點,,且,為橢圓兩焦點,根據(jù)橢圓的定義即可得△的周長為,則答案可求【詳解】橢圓,橢圓的長軸長為,∴△的周長為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】過作,交于點,作,交于點,由向量共線定理可得;再由角平分線性質(zhì)定理和雙曲線的定義、結(jié)合余弦定理和離心率公式,可得所求值【詳解】解:過作交于點,作交于點,由,得,由角平分線定理;因為為的中點,所以,由雙曲線的定義,,所以,,,在中,由余弦定理,所以.故答案為:;.【點睛】本題考查雙曲線的定義、方程和性質(zhì),以及角平分線的性質(zhì)定理和余弦定理的運用,考查方程思想和運算能力,屬于中檔題14、【解析】由題可得有兩個不同正根,利用分離參數(shù)法得到.令,,只需和有兩個交點,利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域為,,要使函數(shù)有兩個極值點,只需有兩個不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個極值點,只需和有兩個交點,∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當時,;當時,;作出和的圖像如圖,所以,即,即實數(shù)a的取值范圍為.故答案為:15、【解析】先求出,然后當時,由,得,兩式相減可求出,再驗證,從而可得數(shù)列為等比數(shù)列,進而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實數(shù)的取值范圍【詳解】當時,,得,當時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數(shù)列是以為公比,為首項的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數(shù)的取值范圍為故答案為:【點睛】關(guān)鍵點點睛:此題考查數(shù)列通項公的求法,等比數(shù)列求和公式的應(yīng)用,考查不等式恒成立問題,解題的關(guān)鍵是求出數(shù)列的通項公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題16、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導(dǎo)數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域為,當時,對于恒成立,此時函數(shù)在上單調(diào)遞增;當時,由可得;由可得;此時在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:當時,函數(shù)的單調(diào)遞增區(qū)間為,當時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調(diào)遞增,因為,,所以在上存在唯一零點,即,可得:,當時,,則,當時,,則,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的方法:(1)確定函數(shù)的定義域;求導(dǎo)函數(shù),由(或)解出相應(yīng)的的范圍,對應(yīng)的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導(dǎo)函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個子區(qū)間,在這些子區(qū)間上討論的正負,由符號確定在子區(qū)間上的單調(diào)性.18、(1);(2).【解析】(1)根據(jù)給定的遞推公式結(jié)合“當時,”探求相鄰兩項的關(guān)系計算作答.(2)由(1)的結(jié)論求出,再利用裂項相消法求出,即可作答.【小問1詳解】依題意,,,則當時,,于是得:,即,而當時,,即有,因此,,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,,所以數(shù)列的通項公式是.【小問2詳解】由(1)知,,從而有,所以.19、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對任意一個,都有一個,故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因為,所以函數(shù)單調(diào)遞減,,因為函數(shù)為有界集合,所以分兩種情況討論:當,即時,集合的上界,當時,不等式為;當時,不等式為;當時,不等式為,即時,集合的上界,當,即時,集合的上界,同上解不等式得的解為,即時,集合的上界,綜上得時,集合的上界;時,集合的上界.時,集合的上界是一個減函數(shù),所以此時,時,集合的上界是增函數(shù),所以,所以集合的上界最小值為;20、(Ⅰ)最大值為,最小值為.(Ⅱ)最大值為,最小值為.【解析】(Ⅰ)切點在函數(shù)上,也在切線方程為上,得到一個式子,切線的斜率等于曲線在的導(dǎo)數(shù),得到另外一個式子,聯(lián)立可求實數(shù),的值;(Ⅱ)函數(shù)在閉區(qū)間的最值在極值點或者端點處取得,通過比較大小可得最大值和最小值.【詳解】解:(Ⅰ),∵曲線在處的切線方程為,∴解得,.(Ⅱ)由(Ⅰ)知,,則,令,解得,∴在上單調(diào)遞減,在上單調(diào)遞增,又,,,∴在區(qū)間上的最大值為,最小值為.【點睛】本題主要考查導(dǎo)函數(shù)與切線方程的關(guān)系以及利用導(dǎo)函數(shù)求最值的問題.21、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線的方程為,代入,再利用韋達定理,即可得到結(jié)論;(2)由拋物線的定義,結(jié)合余弦函數(shù)的定義,即可得到的長,同理可得的長,兩式相乘即可證明;【小問1詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論