四川省南充市第一中學2026屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
四川省南充市第一中學2026屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
四川省南充市第一中學2026屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
四川省南充市第一中學2026屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
四川省南充市第一中學2026屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省南充市第一中學2026屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過兩點和的直線的斜率為()A. B.C. D.2.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.3.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種4.設曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.65.函數(shù)在上的最小值為()A. B.4C. D.6.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.217.已知f(x)為R上的可導函數(shù),其導函數(shù)為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)8.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,9.拋物線的焦點坐標是A. B.C. D.10.函數(shù)的圖像大致是()A B.C. D.11.橢圓的兩焦點之間的距離為A. B.C. D.12.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的導函數(shù)為,,,則的解集為___________.14.若數(shù)列滿足,則稱為“追夢數(shù)列”.已知數(shù)列為“追夢數(shù)列”,且,則數(shù)列的通項公式__________.15.小明同學發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.16.已知數(shù)列的前n項和為,則取得最大值時n的值為__________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角A、B、C的對邊分別為a、b、c,滿足(1)求A的大小;(2)若,的面積為,求的周長18.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角余弦值.19.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.20.(12分)設數(shù)列滿足,數(shù)列的前項和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;(2)設,若對任意正整數(shù),當時,恒成立,求實數(shù)的取值范圍.21.(12分)已知數(shù)列是公差為2的等差數(shù)列,且滿足,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和22.(10分)在中,(1)求的大??;(2)若,.求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】應用兩點式求直線斜率即可.【詳解】由已知坐標,直線的斜率為.故選:D2、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關(guān)系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設的傾斜角為,,所以.故選:D3、B【解析】由已知可得只需對剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對剩下3人全排即可,則不同的排法共有,故選:B4、C【解析】求出原函數(shù)的導函數(shù),得到函數(shù)在處的導數(shù)值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C5、D【解析】求出導數(shù),由導數(shù)確定函數(shù)在上的單調(diào)性與極值,可得最小值【詳解】,所以時,,遞減,時,,遞增,所以是在上的唯一極值點,極小值也是最小值.故選:D6、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A7、D【解析】通過構(gòu)造函數(shù)法,結(jié)合導數(shù)確定正確答案.【詳解】構(gòu)造函數(shù),所以在上遞增,所以,即.故選:D8、A【解析】設平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.9、D【解析】根據(jù)拋物線的焦點坐標為可知,拋物線即的焦點坐標為,故選D.考點:拋物線的標準方程及其幾何性質(zhì).10、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導數(shù)探討函數(shù)的單調(diào)性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導得,當或時,,當時,,于是得在和上都單調(diào)遞增,在上單調(diào)遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B11、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個焦點的坐標為,因此可知兩焦點之間的距離為,故選C考點:橢圓的簡單幾何性質(zhì)點評:解決的關(guān)鍵是將方程變?yōu)闃藴适剑缓蠼Y(jié)合性質(zhì)得到結(jié)論,屬于基礎題12、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù),構(gòu)造函數(shù),利用其單調(diào)性求解.【詳解】因為,所以,令,則,,所以是減函數(shù),又,即,,所以,所以,則的解集為故答案為:14、##【解析】根據(jù)題意,由“追夢數(shù)列”的定義可得“追夢數(shù)列”是公比為的等比數(shù)列,進而可得若數(shù)列為“追夢數(shù)列”,則為公比為3的等比數(shù)列,進而由等比數(shù)列的通項公式可得答案【詳解】根據(jù)題意,“追夢數(shù)列”滿足,即,則數(shù)列是公比為的等比數(shù)列.若數(shù)列為“追夢數(shù)列”,則.故答案為:.15、【解析】建立直角坐標系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標系,設雙曲線的標準方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:16、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時n的值,然后利用,即求.【詳解】∵,∴當時,單調(diào)遞減且,當時,單調(diào)遞減且,∴時,取得最大值,∴.故答案為:13;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)通過正弦定理將邊化為角的關(guān)系,可得,進而可得結(jié)果;(2)由面積公式得,結(jié)合余弦定理得,進而得結(jié)果.【小問1詳解】∵∴由正弦定理,得∴∵,∴,故【小問2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長為18、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標系,設,即可得到點,,的坐標,最后利用空間向量法求出二面角的余弦值;【小問1詳解】證明:連接DE因為,且D為AC的中點,所以因為,且D為AC的中點,所以因為平面BDE,平面BDE,且,所以平面因為,所以平面BDE,所以【小問2詳解】解:由(1)可知因為平面平面,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系設.則,,.從而,設平面BCE的法向量為,則令,得平面ABC的一個法向量為設二面角為,由圖可知為銳角,則19、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設每件定價為x元,可得提高價格后的銷售量,根據(jù)銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設每件定價為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價最多為40元.(2)依題意知:當x>25時,不等式有解,等價于x>25時,有解.由于,當且僅當,即x=30時等號成立,所以a≥10.2.當該商品改革后的銷售量a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.20、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項公式后利用累加法即可求的通項公式;(2)裂項相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當時,得到,∴,當時,是以4為首項,2為公差的等差數(shù)列∴當時,當時,也滿足上式,.【小問2詳解】令,當,因此的最小值為,的最大值為對任意正整數(shù),當時,恒成立,得,即在時恒成立,,解得t<0或t>3.21、(1)(2)【解析】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論