河南省信陽市予南高級中學(xué)2026屆數(shù)學(xué)高一上期末考試模擬試題含解析_第1頁
河南省信陽市予南高級中學(xué)2026屆數(shù)學(xué)高一上期末考試模擬試題含解析_第2頁
河南省信陽市予南高級中學(xué)2026屆數(shù)學(xué)高一上期末考試模擬試題含解析_第3頁
河南省信陽市予南高級中學(xué)2026屆數(shù)學(xué)高一上期末考試模擬試題含解析_第4頁
河南省信陽市予南高級中學(xué)2026屆數(shù)學(xué)高一上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省信陽市予南高級中學(xué)2026屆數(shù)學(xué)高一上期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.關(guān)于的不等式的解集為,且,則()A.3 B.C.2 D.2.函數(shù)f(x)=,的圖象大致是()A. B.C. D.3.已知一幾何體的三視圖,則它的體積為A. B.C. D.4.已知函數(shù),,則函數(shù)的值域為()A. B.C. D.5.在梯形中,,,是邊上的點,且.若記,,則()A. B.C. D.6.已知表示不大于的最大整數(shù),若函數(shù)在上僅有一個零點,則實數(shù)的取值范圍為()A. B.C. D.7.已知,,則的大小關(guān)系是A. B.C. D.8.已知冪函數(shù)在上單調(diào)遞減,則的值為A. B.C.或 D.9.已知角的頂點與原點重合,它的始邊與軸的非負半軸重合,它的終邊上一點坐標為,.則為()A. B.C. D.10.命題“”的否定是:()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.求值:______.12.已知函數(shù),則=____________13.已知函數(shù)圖像關(guān)于對稱,當時,恒成立,則滿足的取值范圍是_____________14.函數(shù)的定義域是___________.15.如圖,在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為________.16.在中,角、、所對的邊為、、,若,,,則角________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)(1)若,求的值(2)求函數(shù)在R上的最小值;(3)若方程在上有四個不相等的實數(shù)根,求a的取值范圍18.(1)計算:.(2)化簡:.19.已知集合,(1)當m=5時,求A∩B,;(2)若,求實數(shù)m取值范圍20.已知函數(shù).(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;(2)記函數(shù),證明:函數(shù)在上有唯一零點.21.已知函數(shù)(1)求函數(shù)的最小正周期;(2)將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,若關(guān)于的方程在上有2個不等的實數(shù)解,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)一元二次不等式與解集之間的關(guān)系可得、,結(jié)合計算即可.【詳解】由不等式的解集為,得,不等式對應(yīng)的一元二次方程為,方程的解為,由韋達定理,得,,因為,所以,即,整理,得.故選:A2、A【解析】判斷函數(shù)的奇偶性,以及函數(shù)在上的符號,利用排除法進行判斷即可【詳解】∵f(x)=,∴,,∴函數(shù)是奇函數(shù),排除D,當時,,則,排除B,C.故選:A3、C【解析】所求體積,故選C.4、B【解析】根據(jù)給定條件換元,借助二次函數(shù)在閉區(qū)間上的最值即可作答.【詳解】依題意,函數(shù),,令,則在上單調(diào)遞增,即,于是有,當時,,此時,,當時,,此時,,所以函數(shù)的值域為.故選:B5、A【解析】作出圖形,由向量加法的三角形法則得出可得出答案.【詳解】如下圖所示:由題意可得,由向量加法的三角形法則可得.故選:A.【點睛】本題考查利用基底來表示向量,涉及平面向量加法的三角形法則的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】根據(jù)題意寫出函數(shù)表達式為:,在上僅有一個零點分兩種情況,情況一:在第一段上有零點,,此時檢驗第二段無零點,故滿足條件;情況二,第二段有零點,以上兩種情況并到一起得到:.故答案為C.點睛:在研究函數(shù)零點時,有一種方法是把函數(shù)的零點轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點,特別是利用分離參數(shù)法轉(zhuǎn)化為動直線與函數(shù)圖象交點問題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢,得出結(jié)論.7、D【解析】因為,故,同理,但,故,又,故即,綜上,選D點睛:對于對數(shù),如果或,那么;如果或,那么8、A【解析】由函數(shù)為冪函數(shù)得,即,解得或.當時,,符合題意.當時,,不和題意綜上.選A9、D【解析】根據(jù)正弦函數(shù)的定義可得選項.【詳解】的終邊上有一點,,.故選:D.10、A【解析】由特稱命題的否定是全稱命題,可得出答案.【詳解】根據(jù)特稱命題的否定是全稱命題,可知命題“”的否定是“”.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】利用指數(shù)式與對數(shù)式的互化,對數(shù)運算法則計算作答.【詳解】.故答案為:712、【解析】由函數(shù)解析式,先求得,再求得代入即得解.【詳解】函數(shù),則==,故答案為.【點睛】本題考查函數(shù)值的求法,屬于基礎(chǔ)題.13、【解析】由函數(shù)圖像關(guān)于對稱,可得函數(shù)是偶函數(shù),由當時,恒成立,可得函數(shù)在上為增函數(shù),從而將轉(zhuǎn)化為,進而可求出取值范圍【詳解】因為函數(shù)圖像關(guān)于對稱,所以函數(shù)是偶函數(shù),所以可轉(zhuǎn)化為因為當時,恒成立,所以函數(shù)在上為增函數(shù),所以,解得,所以取值范圍為,故答案為:14、【解析】利用根式、分式的性質(zhì)求函數(shù)定義域即可.【詳解】由解析式知:,則,可得,∴函數(shù)定義域為.故答案為:.15、【解析】如圖,取中點,中點,連接,由題可知,邊長均為1,則,中,,則,得,所以二面角的平面角即,在中,,則,所以.點睛:本題采用幾何法去找二面角,再進行求解.利用二面角的定義:公共邊上任取一點,在兩個面內(nèi)分別作公共邊的垂線,兩垂線的夾角就是二面角的平面角,找到二面角的平面角,再求出對應(yīng)三角形的三邊,利用余弦定理求解(本題中剛好為直角三角形).16、.【解析】利用余弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點睛】本題考查余弦定理的應(yīng)用和反三角函數(shù),解題時要充分結(jié)合元素類型選擇正弦定理和余弦定理解三角形,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用換元法,對進行分類討論,結(jié)合二次函數(shù)的性質(zhì)求得正確答案.(3)利用換元法,結(jié)合二次函數(shù)零點分布等知識來求得的取值范圍.【小問1詳解】因,所以即此時,由【小問2詳解】令,,則,對稱軸為①,即,②,即,③,即,綜上可知,.【小問3詳解】令,由題意可知,當時,有兩個不等實數(shù)解,所以原題可轉(zhuǎn)化為在內(nèi)有兩個不等實數(shù)根所以有18、(1);(2)【解析】(1)根據(jù)分數(shù)指數(shù)冪及對數(shù)的運算法則計算可得;(2)利用誘導(dǎo)公式及特殊值的三角函數(shù)值計算可得;【詳解】解:(1)(2)19、(1),(2)【解析】(1)根據(jù)集合的交集、并集運算即得解;(2)轉(zhuǎn)化為,分,兩種情況討論,列出不等式控制范圍,求解即可【小問1詳解】(1)當時,可得集合,,根據(jù)集合的運算,得,.【小問2詳解】解:由,可得,①當時,可得,解得;②當時,則滿足,解得,綜上實數(shù)的取值范圍是.20、(1)在上單調(diào)遞增,證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,結(jié)合作差法,即可求證;(2)根據(jù)題意,結(jié)合單調(diào)性與零點存在性定理,即可求證.【小問1詳解】函數(shù)在上單調(diào)遞增.證明:任取,則,因為,所以,所以,即,因此,故函數(shù)在上單調(diào)遞增.【小問2詳解】證明:因為,,所以由函數(shù)零點存在定理可知,函數(shù)在上有零點,因為和都在上單調(diào)遞增,所以函數(shù)在上單調(diào)遞增,故函數(shù)在上有唯一零點.21、(1)(2)【解析】(1)利用三角恒等變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論