2026屆上海閔行區(qū)數(shù)學(xué)高二上期末檢測試題含解析_第1頁
2026屆上海閔行區(qū)數(shù)學(xué)高二上期末檢測試題含解析_第2頁
2026屆上海閔行區(qū)數(shù)學(xué)高二上期末檢測試題含解析_第3頁
2026屆上海閔行區(qū)數(shù)學(xué)高二上期末檢測試題含解析_第4頁
2026屆上海閔行區(qū)數(shù)學(xué)高二上期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆上海閔行區(qū)數(shù)學(xué)高二上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則實數(shù)等于()A.1 B.2C. D.2.已知,是雙曲線的左,右焦點,經(jīng)過點且與x軸垂直的直線與雙曲線的一條漸近線相交于點A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.3.直線被圓截得的弦長為()A.1 B.C.2 D.34.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-95.一組“城市平安建設(shè)”的滿意度測評結(jié)果,,…,的平均數(shù)為116分,則,,…,,116的()A.平均數(shù)變小 B.平均數(shù)不變C.標準差不變 D.標準差變大6.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.7.2021年4月29日,中國空間站天和核心艙發(fā)射升空,這標志著中國空間站在軌組裝建造全面展開,我國載人航天工程“三步走”戰(zhàn)略成功邁出第三步.到今天,天和核心艙在軌已經(jīng)九個多月.在這段時間里,空間站關(guān)鍵技術(shù)驗證階段完成了5次發(fā)射、4次航天員太空出艙、1次載人返回、1次太空授課等任務(wù).一般來說,航天器繞地球運行的軌道近似看作為橢圓,其中地球的球心是這個橢圓的一個焦點,我們把橢圓軌道上距地心最近(遠)的一點稱作近(遠)地點,近(遠)地點與地球表面的距離稱為近(遠)地點高度.已知天和核心艙在一個橢圓軌道上飛行,它的近地點高度大約351km,遠地點高度大約385km,地球半徑約6400km,則該軌道的離心率為()A. B.C. D.8.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.19.已知數(shù)列的通項公式為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.若球的半徑為,一個截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.11.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則12.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時,f(p)最大,則p0=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,一個小球從10m高處自由落下,每次著地后又彈回到原來高度的,若已知小球經(jīng)過的路程為,則小球落地的次數(shù)為______14.已知數(shù)列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為____________.15.一個六棱錐的體積為,其底面是邊長為的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為.16.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結(jié)論:_____________,它是_________命題(填“真”或“假”).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖①,直角梯形中,,,點,分別在,上,,,將四邊形沿折起,使得點,分別到達點,的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.18.(12分)如圖,已知橢圓:經(jīng)過點,離心率(1)求橢圓的標準方程;(2)設(shè)是經(jīng)過右焦點的任一弦(不經(jīng)過點),直線與直線:相交于點,記,,的斜率分別為,,,求證:,,成等差數(shù)列19.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點,求二面角的余弦值.20.(12分)在四棱錐中,底面ABCD是矩形,點E是線段PA的中點.(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點E到平面PDB的距離.21.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.22.(10分)(1)求函數(shù)的單調(diào)區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C2、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因為經(jīng)過點且與軸垂直的直線與雙曲線的一條漸近線相交于點,且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因為,所以,,即,所以,即,即,故,所以.故選:B3、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.4、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當(dāng)時,;當(dāng)時,,故選:A5、B【解析】利用平均數(shù)、方差的定義和性質(zhì)直接求出,,…,,116的平均數(shù)、方差從而可得答案.【詳解】,,…,的平均數(shù)為116分,則,,…,,116的平均數(shù)為設(shè),,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數(shù)不變,方差變小.標準差變小.故選:B6、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B7、A【解析】根據(jù)遠地點和近地點,求出軌道即橢圓的半長軸和半焦距,即可求得答案.【詳解】設(shè)橢圓的半長軸為a,半焦距為c.則根據(jù)題意得;解得,故該軌道即橢圓的離心率為,故選:A8、C【解析】建立空間直角坐標系,利用點面距公式求得正確答案.【詳解】設(shè)分別是的中點,根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點建立如圖所示空間直角坐標系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點到平面的距離為.故選:C9、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合數(shù)列的單調(diào)性判斷【詳解】根據(jù)題意,已知數(shù)列的通項公式為,若數(shù)列為單調(diào)遞增數(shù)列,則有(),所以,因為,所以,所以當(dāng)時,數(shù)列為單調(diào)遞增數(shù)列,而當(dāng)數(shù)列為單調(diào)遞增數(shù)列時,不一定成立,所以“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分而不必要條件,故選:A10、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點睛】解答本題的關(guān)鍵點在于,球心與截面圓圓心的連線垂直于截面11、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C12、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時,等號成立,即,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則由已知可得數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,根據(jù)等比數(shù)列的通項公式求得,再設(shè)設(shè)小球第n次落地時,經(jīng)過的路程為,由等比數(shù)列的求和公式建立方程求解即可.【詳解】解:設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則當(dāng)時,得出遞推關(guān)系,所以數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,所以,且,設(shè)小球第n次落地時,經(jīng)過的路程為,所以,所以,解得,故答案為:4.14、【解析】先求出,然后當(dāng)時,由,得,兩式相減可求出,再驗證,從而可得數(shù)列為等比數(shù)列,進而可求出,再將問題轉(zhuǎn)化為在上恒成立,所以,從而可求出實數(shù)的取值范圍【詳解】當(dāng)時,,得,當(dāng)時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數(shù)列是以為公比,為首項的等比數(shù)列,所以,所以對于任意的,不等式恒成立,可轉(zhuǎn)化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數(shù)的取值范圍為故答案為:【點睛】關(guān)鍵點點睛:此題考查數(shù)列通項公的求法,等比數(shù)列求和公式的應(yīng)用,考查不等式恒成立問題,解題的關(guān)鍵是求出數(shù)列的通項公式后求得,再將問題轉(zhuǎn)化為在上恒成立求解即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題15、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側(cè)棱長都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點:棱柱、棱錐、棱臺的體積16、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問題.【詳解】因為,二元一次不等式所表示的區(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標系,分別求得平面的一個法向量和平面的一個法向量,設(shè)二面角的大小為,由求解.【小問1詳解】解:因為,,,所以,,又,所以是等腰直角三角形,即,所以.由平面幾何知識易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小問2詳解】由(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向,建立如圖所示的空間直角坐標系,設(shè),則,,,,F(xiàn)(1,0,0),則,,設(shè)平面的一個法向量為,由,得,取,則.由,,,得平面,所以平面的一個法向量為,設(shè)二面角的大小為,則,由圖可知二面角為鈍二面角,所以二面角的余弦值為.18、(1);(2)證明見解析【解析】(1)由點在橢圓上得到,再由,得到,聯(lián)立方程組,求得的值,即可得到橢圓的標準方程;(2)由(1)得橢圓右焦點坐標,設(shè)直線的方程為,聯(lián)立方程組,求得,及,結(jié)合斜率公式得到,結(jié)合,求得,即可得到,,成等差數(shù)列【詳解】(1)由題意,點在橢圓上得,可得①又由,所以②由①②聯(lián)立且,可得,,,故橢圓的標準方程為(2)由(1)知,橢圓的方程為,可得橢圓右焦點坐標,顯然直線斜率存在,設(shè)的斜率為,則直線的方程為,聯(lián)立方程組,整理得,設(shè),,則有,,由直線的方程為,令,可得,即,從而,,,又因為共線,則有,即有,所以,將,代入得,又由,所以,即,,成等差數(shù)列【點睛】直線與圓錐曲線的綜合問題的求解策略:對于直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用問題,通常聯(lián)立直線方程與圓錐曲線方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系,以及弦長公式等進行求解,此類問題易錯點是復(fù)雜式子的變形能力不足,導(dǎo)致錯解,能較好的考查考生的邏輯思維能力、運算求解能力19、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標原點,建立空間直角坐標系,從而求出相關(guān)的點的坐標,進而求得相關(guān)向量的坐標,再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點,連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標系.則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論