版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京三中2026屆數(shù)學高二上期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”否定是()A., B.,C., D.,2.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或3.若傾斜角為的直線過,兩點,則實數(shù)()A. B.C. D.4.下列直線中,傾斜角為45°的是()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.6.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.7.直線與直線的位置關系是()A.相交但不垂直 B.平行C.重合 D.垂直8.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形9.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.10.已知A(3,2),點F為拋物線的焦點,點P在拋物線上移動,為使取得最小值,則點P的坐標為()A.(0,0) B.(2,2)C. D.11.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺12.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________14.已知直線與,若,則實數(shù)a的值為______15.已知函數(shù),若,則________.16.已知正方體的棱長為2,E為線段中點,F(xiàn)為線段BC上動點,則(1)的最小值為______;(2)點F到直線DE距離的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若與相交于A、兩點,設,求.18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.19.(12分)在數(shù)列中,,,(1)設,證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項和.20.(12分)求適合下列條件的圓錐曲線的標準方程(1)中心在原點,實軸在軸上,一個焦點在直線上的等軸雙曲線;(2)橢圓的中心在原點,焦點在軸上,離心率等于,且它的一個頂點恰好是拋物線的焦點;(3)經(jīng)過點拋物線21.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標準方程;(2)設O為坐標原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.22.(10分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.2、C【解析】點關于軸的對稱點為,由反射光線的性質(zhì),可設反射光線所在直線的方程為:,再利用直線與圓相切,可知圓心到直線的距離等于半徑,由此即可求出結果【詳解】點關于軸的對稱點為,設反射光線所在直線的方程為:,化為因為反射光線與圓相切,所以圓心到直線的距離,可得,所以或故選:C3、C【解析】根據(jù)直線的傾斜角和斜率的關系得到直線的斜率為,再根據(jù)兩點的斜率公式計算可得;【詳解】解:因為直線的傾斜角為,所以直線的斜率為,所以,解得;故選:C4、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C5、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環(huán)結構(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證6、A【解析】根據(jù)離心率及a,b,c的關系,可求得,代入即可得答案.【詳解】因為離心率,所以,所以,,則,所以C的漸近線方程為.故選:A7、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關系是重合.故選:C8、C【解析】根據(jù)三角恒等變換結合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.9、D【解析】先求定義域,再求導數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.10、B【解析】設點P到準線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點到直線的距離最短求出【詳解】如圖所示:設點P到準線的距離為,準線方程為,所以,當且僅當點為與拋物線的交點時,取得最小值,此時點P的坐標為故選:B11、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A12、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:314、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:15、【解析】求出導函數(shù),確定導函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點睛】本題考查導數(shù)的運算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關鍵16、①.;②..【解析】建立空間直角坐標系.空一:利用空間兩點間距離公式,結合平面兩點間距離公式進行求解即可;空二:根據(jù)空間向量垂直的性質(zhì)進行求解即可.【詳解】建立如圖所示的空間直角坐標系,則有.空一:,代數(shù)式表示橫軸上一點到點和點的距離之和,如下圖所示:設關于橫軸的對稱點為,當線段與橫軸的交點為點時,有最小值,最小值為;空二:設,為垂足,則有,,,因為,所以,因此,化簡得:,當時,即時,此時,有最小值,即最小值為,故答案為:;【點睛】關鍵點睛:利用空間向量垂直的性質(zhì)進行求解是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線的普通方程為;曲線的直角坐標方程為(2)【解析】(1)直接利用轉(zhuǎn)換關系式把參數(shù)方程和極坐標方程轉(zhuǎn)化為直角坐標方程;(2)易得滿足直線的方程,轉(zhuǎn)化為參數(shù)方程,代入曲線的普通方程,再利用韋達定理結合弦長公式即可得出答案.【小問1詳解】解:曲線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)化為普通方程為,曲線的極坐標方程為,即,根據(jù),轉(zhuǎn)化為直角坐標方程為;【小問2詳解】解:因為滿足直線的方程,將轉(zhuǎn)化為參數(shù)方程為(為參數(shù)),代入,得,設A、兩點的參數(shù)分別為,則,所以.18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,即可證得原不等式成立.【小問1詳解】解:在等式兩邊同時除以可得且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,則,因此,.【小問2詳解】證明:,所以,.故原不等式得證.19、(1)略(2)【解析】(1)題中條件,而要證明的是數(shù)列是等差數(shù)列,因此需將條件中所給的的遞推公式轉(zhuǎn)化為的遞推公式:,從而,,進而得證;(2)由(1)可得,,因此數(shù)列的通項公式可以看成一個等差數(shù)列與等比數(shù)列的乘積,故可考慮采用錯位相減法求其前項和,即有:①,①得:②,②-①得.試題解析:(1)∵,,又∵,∴,,∴則是為首項為公差的等差數(shù)列;由(1)得,∴,∴①,①得:②,②-①得.考點:1.數(shù)列的通項公式;2.錯位相減法求數(shù)列的和.20、(1)(2)(3)或【解析】(1)由已知求得,再由等軸雙曲線的性質(zhì)可求得則,由此可求得雙曲線的方程;(2)由已知求得拋物線的焦點為,得出橢圓的,再根據(jù)橢圓的離心率求得,由此可得出橢圓的方程;(3)設拋物線的標準方程為:或,代入點求解即可.【小問1詳解】解:對于直線,令,得,所以,則,所以,所以中心在原點,實軸在軸上,一個焦點在直線上的等軸雙曲線的方程為;【小問2詳解】解:由得拋物線的焦點為,所以對于橢圓,,又橢圓的離心率為,所以,解得,所以橢圓的方程;【小問3詳解】解:因為點在第三象限,所以滿足條件的拋物線的標準方程可以是:或,代入點得或,解得或,所以經(jīng)過點的拋物線的方程為或21、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當直線l的斜率存在時,設出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標準方程為:.【小問2詳解】當直線l的斜率存在時,設直線l的方程為,由消去y并整理得:,設,則,,,,,,要使為定值,必有,解得,此時,當直線l的斜率不存在時,由對稱性不妨令,,,當時,,即當時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值22、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設每件定價為x元,可得提高價格后的銷售量,根據(jù)銷售的總收
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年機關事業(yè)單位工人招聘《機動車駕駛員》技師考試題庫與答案
- 2026年上海師范大學天華學院單招綜合素質(zhì)考試模擬試題帶答案解析
- 10KV配電室安裝工程施工方案
- 2025年物理治療技術試題及答案
- 2026年江西冶金職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題有答案解析
- 2026年南寧職業(yè)技術學院單招綜合素質(zhì)筆試備考試題帶答案解析
- 2026年新疆石河子職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題有答案解析
- 2025年上半年小學美術教資面試試講真題(附答案)
- 人工智能發(fā)展歷程回顧
- 2025年孝感事業(yè)單位真題
- 2025年濟寧職業(yè)技術學院毛澤東思想和中國特色社會主義理論體系概論期末考試模擬題必考題
- m的認主協(xié)議書
- 2025年及未來5年市場數(shù)據(jù)中國機電安裝工程市場調(diào)查研究及行業(yè)投資潛力預測報告
- kv高壓線防護施工方案
- 住建局執(zhí)法證考試題庫及答案2025
- 主管護師聘任述職報告
- AI搜索時代:從GEO到AIBE的品牌新藍圖
- 產(chǎn)品知識培訓會議總結
- 專題11 圓(安徽專用)5年(2021-2025)中考1年模擬《數(shù)學》真題分類匯編
- 工程春節(jié)停復工方案(3篇)
- 社區(qū)基金使用管理辦法
評論
0/150
提交評論